Anal Chim Acta
October 2024
Background: Live single-cell metabolomic studies encounter inherent difficulties attributed to the limited sample volume, minimal compound quantity, and insufficient sensitivity in the Mass Spectrometry (MS) method used to obtain single-cell data. However, understanding cellular heterogeneity, functional diversity, and metabolic processes within individual cells is essential. Exploring how individual cells respond to stimuli, including drugs, environmental changes, or signaling molecules, offers insights into biology, oncology, and drug discovery.
View Article and Find Full Text PDFSustained autocatalysis coupled to compartment growth and division is a key step in the origin of life, but an experimental demonstration of this phenomenon in an artificial system has previously proven elusive. We show that autocatalytic reactions within compartments-when autocatalysis, and reactant and solvent exchange outpace product exchange-drive osmosis and diffusion, resulting in compartment growth. We demonstrate, using the formose reaction compartmentalized in aqueous droplets in an emulsion, that compartment volume can more than double.
View Article and Find Full Text PDFThe segmented RNA genome of influenza A viruses (IAVs) enables viral evolution through genetic reassortment after multiple IAVs coinfect the same cell, leading to viruses harboring combinations of eight genomic segments from distinct parental viruses. Existing data indicate that reassortant genotypes are not equiprobable; however, the low throughput of available virology techniques does not allow quantitative analysis. Here, we have developed a high-throughput single-cell droplet microfluidic system allowing encapsulation of IAV-infected cells, each cell being infected by a single progeny virion resulting from a coinfection process.
View Article and Find Full Text PDF