Antibody-drug conjugates (ADCs) are increasingly used in clinic for multiple indications and may improve upon the activity of parental antibodies by delivering cytotoxic payloads into target cells. This activity is predicated upon internalization to release the cytotoxic payloads intracellularly. Since binding of ADCs to their cell surface targets does not guarantee their internalization, we hypothesize that proteolysis targeting chimeras (PROTACs) could improve the activity of ADCs through forced internalization.
View Article and Find Full Text PDFDespite ongoing efforts to employ structure-based methods to discover targeted protein degraders (TPD), the prevailing strategy continues to be the synthesis of a focused set of heterobifunctional compounds and screen them for target protein degradation. Here we used a fluorescence based live cell imaging screen to identify degraders that target exon 14 skipped hepatocyte growth factor receptor (MET). MET is a known oncogenic driver.
View Article and Find Full Text PDFBackground: B-cell receptor (BCR) signaling is a central driver in chronic lymphocytic leukemia (CLL), along with the activation of pro-survival pathways (e.g., NF-κB) and aberrant anti-apoptotic mechanisms (e.
View Article and Find Full Text PDFPyrimidine nucleotide biosynthesis is a druggable metabolic dependency of cancer cells, and chemotherapy agents targeting pyrimidine metabolism are the backbone of treatment for many cancers. Dihydroorotate dehydrogenase (DHODH) is an essential enzyme in the de novo pyrimidine biosynthesis pathway that can be targeted by clinically approved inhibitors. However, despite robust preclinical anticancer efficacy, DHODH inhibitors have shown limited single-agent activity in phase 1 and 2 clinical trials.
View Article and Find Full Text PDFUnlabelled: Chronic lymphocytic leukemia (CLL) cell survival and growth is fueled by the induction of B-cell receptor (BCR) signaling within the tumor microenvironment (TME) driving activation of NFκB signaling and the unfolded protein response (UPR). Malignant cells have higher basal levels of UPR posing a unique therapeutic window to combat CLL cell growth using pharmacologic agents that induce accumulation of misfolded proteins. Frontline CLL therapeutics that directly target BCR signaling such as Bruton tyrosine kinase (BTK) inhibitors (e.
View Article and Find Full Text PDFAs an adaptation for survival during infection, becomes dormant, reducing its metabolism and growth. Two types of citrate synthases have been identified in , GltA2 and CitA. Previous work shows that overexpression of CitA, the secondary citrate synthase, stimulates the growth of under hypoxic conditions without showing accumulation of triacylglycerols and makes mycobacteria more sensitive to antibiotics, suggesting that CitA may play a role as a metabolic switch during infection and may be an interesting TB drug target.
View Article and Find Full Text PDFPyrimidine nucleotide biosynthesis is a druggable metabolic dependency of cancer cells, and chemotherapy agents targeting pyrimidine metabolism are the backbone of treatment for many cancers. Dihydroorotate dehydrogenase (DHODH) is an essential enzyme in the de novo pyrimidine biosynthesis pathway that can be targeted by clinically approved inhibitors. However, despite robust preclinical anticancer efficacy, DHODH inhibitors have shown limited single-agent activity in phase 1 and 2 clinical trials.
View Article and Find Full Text PDFCyclin-dependent kinase 5 (Cdk5) is a crucial regulator of neuronal signal transduction. Cdk5 activity is implicated in various neuropsychiatric and neurodegenerative conditions such as stress, anxiety, depression, addiction, Alzheimer's disease, and Parkinson's disease. While constitutive Cdk5 knockout is perinatally lethal, conditional knockout mice display resilience to stress-induction, enhanced cognition, neuroprotection from stroke and head trauma, and ameliorated neurodegeneration.
View Article and Find Full Text PDFActivation of inhibitor of nuclear factor NF-κB kinase subunit-β (IKKβ), characterized by phosphorylation of activation loop serine residues 177 and 181, has been implicated in the early onset of cancer. On the other hand, tissue-specific IKKβ knockout in Kras mutation-driven mouse models stalled the disease in the precancerous stage. In this study, we used cell line models, tumor growth studies, and patient samples to assess the role of IKKβ and its activation in cancer.
View Article and Find Full Text PDFThe unfolded protein response (UPR) is an adaptation mechanism activated to resolve transient accumulation of unfolded/misfolded proteins in the endoplasmic reticulum. Failure to resolve the transient accumulation of such proteins results in UPR-mediated programmed cell death. Loss of tumor suppressor gene or oncogene addiction in cancer cells can result in sustained higher basal UPR levels; however, it is not clear if these higher basal UPR levels in cancer cells can be exploited as a therapeutic strategy.
View Article and Find Full Text PDFThe IKK-NFκB complex is a key signaling node that facilitates activation of gene expression in response to extracellular signals. The kinase IKKβ and the transcription factor RELA have been targeted by covalent modifiers that bind to surface exposed cysteine residues. A common feature in well characterized covalent modifiers of RELA and IKKβ is the Michael acceptor containing α-methylene-γ-butyrolactone functionality.
View Article and Find Full Text PDFTumor necrosis factor (TNF) α-induced nuclear translocation of the NF-κB subunit RELA has been implicated in several pathological conditions. Here we report the discovery of a spirocyclic dimer (SpiD7) that covalently modifies RELA to inhibit TNFα-induced nuclear translocation. This is a previously unexplored strategy to inhibit TNFα-induced NF-κB activation.
View Article and Find Full Text PDFThe cyclin-dependent kinase (CDK) family of proteins play prominent roles in transcription, mRNA processing, and cell cycle regulation, making them attractive cancer targets. Palbociclib was the first FDA-approved CDK inhibitor that non-selectively targets the ATP binding sites of CDK4 and CDK6. In this review, we will briefly inventory CDK inhibitors that are either part of over 30 active clinical trials or recruiting patients.
View Article and Find Full Text PDFGenetic models validated Inhibitor of nuclear factor (NF) kappa B kinase beta (IKKβ) as a therapeutic target for KRAS mutation associated pancreatic cancer. Phosphorylation of the activation loop serine residues (S, S) in IKKβ is a key event that drives tumor necrosis factor (TNF) α induced NF-κB mediated gene expression. Here we conducted structure activity relationship (SAR) study to improve potency and oral bioavailability of a quinoxaline analog 13-197 that was previously reported as a NFκB inhibitor for pancreatic cancer therapy.
View Article and Find Full Text PDFCyclin-dependent kinase 9 (CDK9) is a member of the cyclin-dependent kinase (CDK) family which is involved in transcriptional regulation of several genes, including the oncogene Myc, and is a validated target for pancreatic cancer. Here we report the development of an aminopyrazole based proteolysis targeting chimera (PROTAC 2) that selectively degrades CDK9 (DC = 158 ± 6 nM). Mass spectrometry-based kinome profiling shows PROTAC 2 selectively degrades CDK9 in MiaPaCa2 cells and sensitizes them to Venetoclax mediated growth inhibition.
View Article and Find Full Text PDFBackground: Several human cancers, especially cervical cancer are caused by the infection of high risk strains of human papillomaviruses (HPV), notably HPV16. It is implicated that the oncoprotein E6 expressed from HPV, is inhibiting the apoptotic pathway by binding to adaptor molecule FADD (Fas-associated death domain). Inhibiting E6 interactions with FADD could provide a promising treatment for cervical cancer.
View Article and Find Full Text PDFAIDS caused by the infection of HIV is a prevalent problem today. Rapid development of drug resistance to existing drug classes has called for the discovery of new targets. Within the three major enzymes (i.
View Article and Find Full Text PDFNeurotensin (NT) and its analog neuromedin N (NN) are formed by the processing of a common precursor in mammalian brain tissue and intestines. The biological effects mediated by NT and NN (e.g.
View Article and Find Full Text PDFIn the present paper, we report the synthesis, radiolabeling and comprehensive pharmacological evaluation of a C-terminally truncated tachykinin derivative, 3H-KFFGLM-NH2. The C-terminal fragments of endogenous tachykinins are pharmacophores responsible for interaction with the tachykinin receptors NK1, NK2 and NK3. The N-terminal fragments are responsible for modulation of receptor selectivity and interactions with other receptor systems.
View Article and Find Full Text PDFHerein we report the radiolabeling and pharmacological investigation of a novel radioligand, the N-cyclobutylmethyl substituted diphenethylamine [(3)H]HS665, designed to bind selectively to the kappa opioid peptide (KOP) receptor, a target of therapeutic interest for the treatment of a variety of human disorders (i.e., pain, affective disorders, drug addiction, and psychotic disorders).
View Article and Find Full Text PDFTritiated opioid ligands are essential tools for the identification of opioid receptors. This review deals with the syntheses of tritiated opioid peptide derivatives, including enkephalins, dynorphins, dermorphins, deltorphins and endomorphins, and also discusses tritium-labeled nonpeptide opioids. It additionally focuses on the relevance of tritium-labeled opioid compounds as research tools for investigating opioid receptor pharmacology.
View Article and Find Full Text PDFThe hexapeptide angiotensin IV (Ang IV) induces diverse biological effects such as memory enhancement and protection against ischemic stroke. Studies on the mechanism of Ang IV however are hampered by its instability and its lack of selectivity. The high-affinity binding site for Ang IV is the insulin-regulated aminopeptidase (IRAP, EC 3.
View Article and Find Full Text PDFSeven diastereomer pairs of tetrapeptide analogues (TP) of endomorphin-1 and -2 were synthesized. A stereoselective capillary electrophoretic method was developed for controlling stereoisomeric ratio or purity. The isoelectric points of the tetrapeptides were between 8.
View Article and Find Full Text PDFBecause of their poor metabolic stability and limited blood-brain barrier permeability, endomorphins have a low analgesic efficacy when administered systemically. Therefore, it is of great importance to design analogues with improved peptidase resistance and better delivery to the central nervous system. Recently, novel endomorphin-2 analogues have been synthesized, which proved to bind with high affinity and selectivity to the μ-opioid receptors and showed proteolytic resistance.
View Article and Find Full Text PDF