Developmental plasticity can alter the expression of sexual signals in novel environments and is therefore thought to play an important role in promoting divergence. Sexual signals, however, are often multimodal and mate choice multivariate. Hence, to understand how developmental plasticity can facilitate divergence, we must assess plasticity across signal components and its cumulative impact on signalling.
View Article and Find Full Text PDFCross talk between phytohormones, nitric oxide (NO), and auxin has been implicated in the control of plant growth and development. Two recent reports indicate that NO promoted auxin signaling but inhibited auxin transport probably through S-nitrosylation. However, genetic evidence for the effect of S-nitrosylation on auxin physiology has been lacking.
View Article and Find Full Text PDFOat-maize addition (OMA) lines with one, or occasionally more, chromosomes of maize (Zea mays L., 2n = 2x = 20) added to an oat (Avena sativa L., 2n = 6x = 42) genomic background can be produced via embryo rescue from sexual crosses of oat x maize.
View Article and Find Full Text PDFQuantitative trait loci (QTL) contributing to the frequency and severity of Ustilago maydis infection in the leaf, ear, stalk, and tassel of maize plants were mapped using an A188 x CMV3 and W23 x CMV3 recombinant inbred (RI) populations. QTLs mapped to genetic bins 2.04 and 9.
View Article and Find Full Text PDF