Mesenchymal stromal cells (MSCs) are promising regenerative therapeutics that primarily exert their effects through secreted extracellular vesicles (EVs). These EVs - being small and non-living - are easier to handle and possess advantages over cellular products. Consequently, the therapeutic potential of MSC-EVs is increasingly investigated.
View Article and Find Full Text PDFMesenchymal-stem/stromal-cell-derived small extracellular vesicles (MSC-sEV) have been shown to ameliorate many diseases in preclinical studies. However, translating MSC-sEV into clinical use requires the development of scalable manufacturing processes for highly reproducible preparations of safe and potent MSC-sEVs. A major source of variability in MSC-sEV preparations is EV producer cells.
View Article and Find Full Text PDFMonoclonal antibodies (mAbs) are used as targeted therapies against cancers. These mAbs kill cancer cells via various mechanisms of actions. In this study, human embryonic stem cells (hESCs) was used as the immunogen to generate a panel of antibodies.
View Article and Find Full Text PDFMesenchymal stem cells (MSC) are currently the cell type of choice in many cell therapy trials. The number of therapeutic applications for MSCs registered as product IND submissions with the FDA and initiation of registered clinical trials has increased substantially in recent years, in particular between 2006 and 2012. However, defined mechanisms of action underpinning the therapeutic efficacy of MSCs are lacking, but they are increasingly attributed to MSC trophic secretion rather than their differentiation potential.
View Article and Find Full Text PDFAims: Cardiac progenitor cells (CPCs) have been isolated from adult and developing hearts using an anti-mouse Sca-1 antibody. However, the absence of a human Sca-1 homologue has hampered the clinical application of the CPCs. Therefore, we generated novel monoclonal antibodies (mAbs) specifically raised against surface markers expressed by resident human CPCs.
View Article and Find Full Text PDFBackground: Exosomes or secreted bi-lipid vesicles from human ESC-derived mesenchymal stem cells (hESC-MSCs) have been shown to reduce myocardial ischemia/reperfusion injury in animal models. However, as hESC-MSCs are not infinitely expansible, large scale production of these exosomes would require replenishment of hESC-MSC through derivation from hESCs and incur recurring costs for testing and validation of each new batch. Our aim was therefore to investigate if MYC immortalization of hESC-MSC would circumvent this constraint without compromising the production of therapeutically efficacious exosomes.
View Article and Find Full Text PDFFour commercially available serum-free and defined culture media tested on 2 human embryonic stem cell (hESC) lines were all found to support undifferentiated growth for >10 continuous passages. For hESC cultured with defined StemPro and mTeSR1 media, the cells were maintained feeder-free on culture dishes coated with extracellular matrices (ECMs) with no requirement of feeder-conditioned media (CM). For xeno-free serum replacer (XSR), HEScGRO, and KnockOut media, mitotically inactivated human foreskin feeders (hFFs) were required for hESC growth.
View Article and Find Full Text PDFHuman embryonic stem cells (hESC) are pluripotent cells that proliferate indefinitely in culture, whilst retaining their capacity for differentiation into different cell types. However, hESC cultures require culture in direct contact with feeder cells or conditioned medium (CM) from feeder cells. The most common source of feeders has been primary mouse embryonic fibroblast (MEF).
View Article and Find Full Text PDFEmbryonic stem cells (ESC) have the unique ability to differentiate into a variety of tissue types. However, the realization of regenerative medicine will require the production of large quantities of ESC which subsequently have to be differentiated into the final phenotype. Thus, we sought to develop a simple and scaleable bioprocess to increase densities of ESC to achieve this goal.
View Article and Find Full Text PDFBiotechnol Bioeng
November 2004
Human embryonic stem cells (HES) hold great potential for regenerative medicine because of their ability to differentiate to any cell type. However, a limitation is that HES cells require a feeder layer to stay undifferentiated. Routinely, mouse embryonic fibroblast is used.
View Article and Find Full Text PDF