The segmentation of pancreas and pancreatic tumor remain a persistent challenge for radiologists. Consequently, it is essential to develop automated segmentation methods to address this task. U-Net based models are most often used among various deep learning-based techniques in tumor segmentation.
View Article and Find Full Text PDFDigitization created a demand for highly efficient handwritten document recognition systems. A handwritten document consists of digits, text, symbols, diagrams, etc. Digits are an essential element of handwritten documents.
View Article and Find Full Text PDFParkinson's disease (PD) is one of the neurodegenerative diseases and its manual diagnosis leads to time-consuming process. MRI-based computer-aided diagnosis helps medical experts to diagnose PD more precisely and fast. Texture-based radiomic analysis is carried out on 3D MRI scans of T1 weighted and resting-state modalities.
View Article and Find Full Text PDFRecent developments in glioma categorization based on biological genotypes and application of computational machine learning or deep learning based predictive models using multi-modal MRI biomarkers to assess these genotypes provides potential assurance for optimal and personalized treatment plans and efficacy. Artificial intelligence based quantified assessment of glioma using MRI derived hand-crafted or auto-extracted features have become crucial as genomic alterations can be associated with MRI based phenotypes. This survey integrates all the recent work carried out in state-of-the-art radiomics, and Artificial Intelligence based learning solutions related to molecular diagnosis, prognosis, and treatment monitoring with the aim to create a structured resource on radiogenomic analysis of glioma.
View Article and Find Full Text PDF