Transmissible Spongiform Encephalopathies are fatal neurodegenerative diseases caused by the misfolding of the cellular prion protein (PrP) into its pathological isoform (PrP). Efficient transmission of PrP occurs within the same species, but a species barrier limits interspecies transmission. While PrP structure is largely conserved among mammals, variations at the β2-α2 loop are observed, and even minor changes in the amino acid sequence of the β2-α2 loop can significantly affect transmission efficiency.
View Article and Find Full Text PDFMisfolding of the prion protein is linked to multiple neurodegenerative diseases. A better understanding of the process requires the identification and structural characterization of intermediate conformations via which misfolding proceeds. In this study, three conserved aromatic residues (Tyr168, Phe174, and Tyr217) located in the C-terminal domain of mouse PrP (wt moPrP) were mutated to Ala.
View Article and Find Full Text PDFRelating the native fold of a protein to its amino acid sequence remains a fundamental problem in biology. While computer algorithms have demonstrated recently their prowess in predicting what structure a particular amino acid sequence will fold to, an understanding of how and why a specific protein fold is achieved remains elusive. A major challenge is to define the role of conformational heterogeneity during protein folding.
View Article and Find Full Text PDFThe misfolding of the mammalian prion protein from its α-helix rich cellular isoform to its β-sheet rich infectious isoform is associated with several neurodegenerative diseases. The determination of the structural mechanism by which misfolding commences, still remains an unsolved problem. In the current study, native-state hydrogen exchange coupled with mass spectrometry has revealed that the N state of the mouse prion protein (moPrP) at pH 4 is in dynamic equilibrium with multiple partially unfolded forms (PUFs) capable of initiating misfolding.
View Article and Find Full Text PDFThe folding mechanism of MNEI, a single-chain variant of naturally occurring double-chain monellin, is complex, with multiple parallel refolding channels. To determine whether its folding energy landscape could be simplified, the two native cis-prolines, Pro41 and Pro93, were mutated, singly and together, to Ala. The stability of P93A was the same as that of the wild-type protein, pWT; however, P41A and P41AP93A were destabilized by ∼0.
View Article and Find Full Text PDFDistinguishing between competing pathways of folding of a protein, on the basis of how they differ in their progress of structure acquisition, remains an important challenge in protein folding studies. A previous study had shown that the heterodimeric protein, double chain monellin (dcMN) switches between alternative folding pathways upon a change in guanidine hydrochloride (GdnHCl) concentration. In the current study, the folding of dcMN has been characterized by the pulsed hydrogen exchange (HX) labeling methodology used in conjunction with mass spectrometry.
View Article and Find Full Text PDFThe misfolding of the prion protein has been linked to several neurodegenerative diseases. Despite extensive studies, the mechanism of the misfolding process remains poorly understood. The present study structurally delineates the role of the conserved proline residues present in the structured C-terminal domain of the mouse prion protein (moPrP) in the misfolding process.
View Article and Find Full Text PDFα-Synuclein (α-Syn) amyloids in synucleinopathies are suggested to be structurally and functionally diverse, reminiscent of prion-like strains. The mechanism of how the aggregation of the same precursor protein results in the formation of fibril polymorphs remains elusive. Here, we demonstrate the structure-function relationship of two polymorphs, pre-matured fibrils (PMFs) and helix-matured fibrils (HMFs), based on α-Syn aggregation intermediates.
View Article and Find Full Text PDFThe formation and propagation of aggregates of the tau protein in the brain are associated with the tauopathy group of neurodegenerative diseases. Different tauopathies have been shown to be associated with structurally distinct aggregates of tau. However, the mechanism by which different structural folds arise remains poorly understood.
View Article and Find Full Text PDFProteins have dynamic structures that undergo chain motions on time scales spanning from picoseconds to seconds. Resolving the resultant conformational heterogeneity is essential for gaining accurate insight into fundamental mechanistic aspects of the protein folding reaction. The use of high-resolution structural probes, sensitive to population distributions, has begun to enable the resolution of site-specific conformational heterogeneity at different stages of the folding reaction.
View Article and Find Full Text PDFNative state hydrogen exchange (HX) methods provide high-resolution structural data on the rare and transient opening motions in proteins under native conditions. Mass spectrometry-based HX methods (HX-MS) have gained popularity because of their ability to delineate population distributions, which allow a direct determination of the mechanism of inter conversion of the partially folded states under native conditions. Various technological advancements have provided further impetus to the development of HX-MS-based experiments to study protein folding.
View Article and Find Full Text PDFLittle is known about how the sequence of structural changes in one chain of a heterodimeric protein is coupled to those in the other chain during protein folding and unfolding reactions, and whether individual secondary structural changes in the two chains occur in one or many coordinated steps. Here, the unfolding mechanism of a small heterodimeric protein, double chain monellin, has been characterized using hydrogen exchange-mass spectrometry. Transient structure opening, which enables HX, was found to be describable by a five state N ↔ I ↔ I ↔ I ↔ U mechanism.
View Article and Find Full Text PDFThe prion protein (PrP) misfolds and oligomerizes at pH 4 in the presence of physiological salt concentrations. Low pH and salt cause structural perturbations in the monomeric prion protein that lead to misfolding and oligomerization. However, the changes in stability within different regions of the PrP prior to oligomerization are poorly understood.
View Article and Find Full Text PDFTau is an intrinsically disordered protein implicated in many neurodegenerative diseases. The repeat domain fragment of tau, tau-K18, is known to undergo a disorder to order transition in the presence of lipid micelles and vesicles, in which helices form in each of the repeat domains. Here, the mechanism of helical structure formation, induced by a phospholipid mimetic, sodium dodecyl sulfate (SDS) at sub-micellar concentrations, has been studied using multiple biophysical probes.
View Article and Find Full Text PDFUnderstanding the properties of the unfolded state under folding conditions is of fundamental importance for gaining mechanistic insight into folding as well as misfolding reactions. Toward achieving this objective, the folding reaction of a small protein, monellin, has been resolved structurally and temporally, with the use of the multisite time-resolved FRET methodology. The present study establishes that the initial polypeptide chain collapse is not only heterogeneous but also structurally asymmetric and nonuniform.
View Article and Find Full Text PDFAmyloid fibrillar aggregates isolated from the brains of patients with neurodegenerative diseases invariably have post-translational modifications (PTMs). The roles that PTMs play in modulating the structures and polymorphism of amyloid aggregates, and hence their ability to catalyze the conversion of monomeric protein to their fibrillar structure is, however, poorly understood. This is particularly true in the case of tau aggregates, where specific folds of fibrillar tau have been implicated in specific tauopathies.
View Article and Find Full Text PDFTo determine experimentally how the multiple folding pathways of a protein differ, in the order in which the structural parts are assembled, has been a long-standing challenge. To resolve whether structure formation during folding can progress in multiple ways, the complex folding landscape of monellin has been characterized, structurally and temporally, using the multisite time-resolved FRET methodology. After an initial heterogeneous polypeptide chain collapse, structure formation proceeds on parallel pathways.
View Article and Find Full Text PDFThe chemistry of protein-ligand binding is the basis of virtually every biological process. Ligand binding can be essential for a protein to function in the cell by stabilizing or altering the conformation of a protein, particularly for partially or completely unstructured proteins. However, the mechanisms by which ligand binding impacts disordered proteins or influences the role of disorder in protein folding is not clear.
View Article and Find Full Text PDFTo obtain proper insight into how structure develops during a protein folding reaction, it is necessary to understand the nature and mechanism of the polypeptide chain collapse reaction, which marks the initiation of folding. Here, the time-resolved fluorescence resonance energy transfer technique, in which the decay of the fluorescence light intensity with time is used to determine the time evolution of the distribution of intra-molecular distances, has been utilized to study the folding of the small protein, monellin. It is seen that when folding begins, about one-third of the protein molecules collapse into a molten globule state (I), from which they relax by continuous further contraction to transit to the native state.
View Article and Find Full Text PDFBiochim Biophys Acta Proteins Proteom
October 2019
The dynamic nature of the tau protein under physiological conditions is likely to be critical for it to perform its diverse functions inside a cell. Under some conditions, this intrinsically disordered protein assembles into pathogenic aggregates that are self-perpetuating, toxic and infectious in nature. The role of liquid-liquid phase separation in the initiation of the aggregation reaction remains to be delineated.
View Article and Find Full Text PDFDomain swapping is the process by which identical monomeric proteins exchange structural elements to generate dimers/oligomers. Although engineered domain swapping is a compelling strategy for protein assembly, its application has been limited due to the lack of simple and reliable design approaches. Here, we demonstrate that the hydrophobic five-residue 'cystatin motif' (QVVAG) from the domain-swapping protein Stefin B, when engineered into a solvent-exposed, tight surface loop between two β-strands prevents the loop from folding back upon itself, and drives domain swapping in non-domain-swapping proteins.
View Article and Find Full Text PDFExperimental determination of the key features of the free energy landscapes of proteins, which dictate their adeptness to fold correctly, or propensity to misfold and aggregate and which are modulated upon a change from physiological to aggregation-prone conditions, is a difficult challenge. In this study, sub-millisecond kinetic measurements of the folding and unfolding of the mouse prion protein reveal how the free energy landscape becomes more complex upon a shift from physiological (pH 7) to aggregation-prone (pH 4) conditions. Folding and unfolding utilize the same single pathway at pH 7, but at pH 4, folding occurs on a pathway distinct from the unfolding pathway.
View Article and Find Full Text PDFThe spread and deposition of infectious fibrillar protein aggregates in the brain via a prion-like mechanism is a critical component in the patho-physiology of various neurodegenerative diseases, including the tauopathies. In tauopathies, two isoforms of tau, containing three and four microtubule binding repeats, are found to aggregate, and the type of isoform present in aggregates determines the type of tauopathy. Cross-seeding between the two tau isoforms is limited by an asymmetric barrier similar to the species barrier that restricts prion transmission across species, whose origin has remained unclear.
View Article and Find Full Text PDF