Being sessile, plants rely on intricate signaling pathways to mount an efficient defense against external threats while maintaining the cost balance for growth. Transcription factors (TFs) form a repertoire of master regulators in controlling various processes of plant development and responses against external stimuli. There are about 58 families of TFs in plants and among them, six major TF families (AP2/ERF (APETALA2/ethylene responsive factor), bHLH (basic helix-loop-helix), MYB (myeloblastosis related), NAC (no apical meristem (NAM), transcription activation factor (ATAF1/2), and cup-shaped cotyledon (CUC2)), WRKY, and bZIP (basic leucine zipper)) are found to be involved in biotic and abiotic stress responses.
View Article and Find Full Text PDFWRKY transcription factors (TFs) belong to a large family of regulatory proteins in plants that modulate many plant processes. Extensive studies have been conducted on WRKY-mediated defense response in Arabidopsis thaliana and several crop species. Here, we aimed to investigate the potential roles and contributions of WRKY TFs in improving the defense response in the resynthesized Arabidopsis allotetraploids (Arabidopsis suecica) derived from two related autotetraploid progenitors, Arabidopsis thaliana (At4) and Arabidopsis arenosa (Aa).
View Article and Find Full Text PDF