Publications by authors named "Jayachandran Gitanjali"

Article Synopsis
  • Anti-HER2 therapies like trastuzumab emtansine (T-DM1) and trastuzumab deruxtecan (T-DXd) have improved outcomes for patients with HER2+ metastatic breast cancer, but resistance to these treatments poses a significant challenge without established follow-up therapies.
  • The study examined genetic changes in breast cancer patients after anti-HER2 therapy and developed resistant cancer cell lines to explore mechanisms of resistance and identify potential targets to boost the effectiveness of T-DXd.
  • It was discovered that resistance might occur due to reduced HER2 expression and increased activity of DNA repair genes, suggesting that targeting DNA repair pathways could enhance the efficacy of T-DXd in resistant cases.
View Article and Find Full Text PDF

Circulating tumor cells (CTCs) are indicators of metastatic spread and progression. In a longitudinal, single-center trial of patients with metastatic breast cancer starting a new line of treatment, a microcavity array was used to enrich CTCs from 184 patients at up to 9 timepoints at 3-month intervals. CTCs were analyzed in parallel samples from the same blood draw by imaging and by gene expression profiling to capture CTC phenotypic plasticity.

View Article and Find Full Text PDF

Background: Circulating tumor cells (CTCs) are a promising non-invasive tool for monitoring therapy response. The only Food and Drug Administration (FDA)-approved test is limited to enumeration of epithelial CTC without further characterization and is not approved for the management of non-small cell lung cancer (NSCLC). Here we use a MicroCavity Array (MCA) system to capture CTC agnostic of epithelial markers for further molecular testing in NSCLC.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) captured from the blood of cancer patients may serve as a surrogate source of tumor material that can be obtained via a venipuncture (also known as a liquid biopsy) and used to better understand tumor characteristics. However, the only FDA-cleared CTC assay has been limited to the enumeration of surface marker-defined cells and not further characterization of the CTCs. In this study, we tested the ability of a semi-automated device capable of capturing and harvesting CTCs from peripheral blood based on cell size and deformability, agnostic of cell-surface markers (the Parsortix PC1 System), to yield CTCs for evaluation by downstream techniques commonly available in clinical laboratories.

View Article and Find Full Text PDF

Current gold standard for absolute quantitation of a specific DNA sequence is droplet digital PCR (ddPCR), which has been applied to copy number variation (CNV) detection. However, the number of quantitation modules in ddPCR is limited by fluorescence channels, which thus limits the CNV sensitivity due to sampling error following Poisson distribution. Here we develop a PCR-based molecular barcoding NGS approach, quantitative amplicon sequencing (QASeq), for accurate absolute quantitation scalable to over 200 quantitation modules.

View Article and Find Full Text PDF

Background: Various methods of liquid biopsy through the sampling of blood in cancer patients allow access to minuscule amounts of tumor that can easily be sampled repeatedly throughout therapy. Circulating tumor cells (CTCs) represent shed tumor cells that can be characterized by imaging or molecular techniques using an amenable enrichment platform. Here we validate the Hitachi Chemical Micro Cavity Array (MCA) for the enrichment of CTCs from the blood of patients diagnosed with stage III non-small cell lung cancer (NSCLC).

View Article and Find Full Text PDF

Circulating tumor cells (CTC) isolated from the peripheral blood of cancer patients by a minimally invasive procedure provide surrogate markers of the tumor that can be repeatedly sampled. However, the selection and enumeration of CTCs by traditional methods based on surface proteins like EPCAM may not detect CTCs with a mesenchymal phenotype. Here, we employed an antibody-agnostic platform, the Parsortix® PR1 system, which enriches CTCs based on cell size and membrane deformability.

View Article and Find Full Text PDF

Expression of the tumor suppressor gene TUSC2 is reduced or absent in most lung cancers and is associated with worse overall survival. In this study, we restored TUSC2 gene expression in several wild type EGFR non-small cell lung cancer (NSCLC) cell lines resistant to the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor erlotinib and analyzed their sensitivity to erlotinib in vitro and in vivo. A significant inhibition of cell growth and colony formation was observed with TUSC2 transient and stable expression.

View Article and Find Full Text PDF

Background: Tumor suppressor gene TUSC2/FUS1 (TUSC2) is frequently inactivated early in lung cancer development. TUSC2 mediates apoptosis in cancer cells but not normal cells by upregulation of the intrinsic apoptotic pathway. No drug strategies currently exist targeting loss-of-function genetic abnormalities.

View Article and Find Full Text PDF

Protein-protein interactions are key elements in the assembly of cellular regulatory and signaling protein complexes that integrate and transmit signals and information in controlling and regulating various cellular processes and functions. Many conventional methods of studying protein-protein interaction, such as the immuno-precipitation and immuno-blotting assay and the affinity-column pull-down and chromatographic analysis, are very time-consuming and labor intensive and lack accuracy and sensitivity. We have developed a simple, rapid, and sensitive assay using a ProteinChip array and SELDI-TOF mass spectrometry to analyze protein-protein interactions and map the crucial elements that are directly involved in these interactions.

View Article and Find Full Text PDF

Protein phosphorylation is a dynamic post-translational modification that plays a critical role in the regulation of a wide spectrum of biological events and cellular functions including signal transduction, gene expression, cell proliferation, and apoptosis. Determination of the sites and magnitudes of protein phosphorylation has been an essential step in the analysis of the control of many biological systems. A high throughput analysis of phosphorylation of proteins would provide a simple, logical, and useful tool for a functional dissection and prediction of biological functions and signaling pathways in association with these important molecular events.

View Article and Find Full Text PDF

FUS1, also known as tumor suppressor candidate 2 (TUSC2), is a tumor suppressor gene located in the human chromosome 3p21.3 region. FUS1 mRNA transcripts could be detected on Northern blots in both normal lung and some lung cancer cell lines, but no endogenous FUS1 protein could be detected in a majority of lung cancer cell lines and small cell and non-small cell lung tumor tissues.

View Article and Find Full Text PDF

NPRL2, one of the tumor suppressor genes residing in a 120-kb homozygous deletion region of human chromosome band 3p21.3, has a high degree of amino acid sequence homology with the nitrogen permease regulator 2 (NPR2) yeast gene, and mutations of NPRL2 in yeast cells are associated with resistance to cisplatin-mediated cell killing. Previously, we showed that restoration of NPRL2 in NPRL2-negative and cisplatin-resistant cells resensitize lung cancer cells to cisplatin treatment in vitro and in vivo.

View Article and Find Full Text PDF

The fragile histidine triad (FHIT) gene has been shown to function as a tumor suppressor gene in vitro and in vivo. However, the mechanism of its action is still largely unknown. To elucidate the molecular mechanism and biological pathway in FHIT-mediated tumor suppression, we used a complementary gene and protein expression profiling with DNA microarray and ProteinChip technologies to quantitatively monitor cellular changes in gene and protein expression and discover the molecular targets of FHIT in non-small cell lung carcinoma (NSCLC) cells.

View Article and Find Full Text PDF

The up-regulated expression and telomerase activity of human telomerase reverse transcriptase (hTERT) are hallmarks of tumorigenesis. The hTERT promoter has been shown to promote hTERT gene expression selectively in tumor cells but not in normal cells. However, little is known about how tumor cells differentially activate hTERT transcription and induce telomerase activity.

View Article and Find Full Text PDF

101F6 is a candidate tumor suppressor gene harbored on chromosome 3p21.3, a region with frequent and early allele loss and genetic alterations in many human cancers. We previously showed that enforced expression of wild-type 101F6 by adenoviral vector-mediated gene transfer significantly inhibited tumor cell growth in 3p21.

View Article and Find Full Text PDF

FUS1 is a novel tumor suppressor gene identified in human chromosome 3p21.3 region. Loss of expression and deficiency of posttranslational modification of FUS1 protein have been found in a majority of human lung cancers.

View Article and Find Full Text PDF

Homologous transfection systems provide a useful tool for characterizing promoters and other regulatory elements from cloned genes. We have used cultured Aedes albopictus C7-10 mosquito cells to evaluate expression of 20-hydroxyecdysone-inducible genes. Although this cell line has previously been shown to synthesize components of the ecdysteroid receptor and ecdysone-inducible proteins, the well-characterized ecdysteroid response element (EcRE) from the Drosophilahsp27 promoter failed to confer a substantial 20-hydroxyecdysone mediated induction in transfected mosquito cells.

View Article and Find Full Text PDF

Ribosomal protein P0 is one of the highly conserved phosphorylated proteins in the large subunit of eukaryotic ribosomes. P0 has been shown in Drosophila to be a multifunctional protein that associates with elongation factor eEF2 to facilitate translation and also plays a role in DNA repair. In this paper we describe the cloning and characterization of the full-length cDNA encoding P0 from the mosquito, Aedes albopictus.

View Article and Find Full Text PDF