Ewing sarcoma is a cancer of bone and soft tissue in children and young adults primarily driven by the EWS-FLI1 fusion oncoprotein, which has been undruggable. Here, we report that Ewing sarcoma depends on secreted sphingomyelin phosphodiesterase 1 (SMPD1), a ceramide-generating enzyme, and ceramide. We find that G-protein-coupled receptor 64 (GPR64)/adhesion G-protein-coupled receptor G2 (ADGRG2) responds to ceramide and mediates critical growth signaling in Ewing sarcoma.
View Article and Find Full Text PDFEwing sarcoma is a cancer of bone and soft tissue in children and young adults that is driven by the EWS-ETS fusion transcription factor, most commonly EWS-FLI1. We previously reported that Ewing sarcoma harbors two populations of cells, the CD133 population displaying higher growth rate and the CD133 population displaying chemotherapy resistance. We now find that the ubiquitin-specific protease 1 (USP1) is a transcriptional target of the EWS-FLI1 fusion oncoprotein, expressed at high and low levels in the CD133 and the CD133 populations, respectively, and determines chemo-sensitivity.
View Article and Find Full Text PDFRetinoblastoma is a cancer of the infant retina primarily driven by loss of the Rb tumor suppressor gene, which is undruggable. Here, we report an autocrine signaling, mediated by secreted frizzled-related protein 2 (SFRP2), which suppresses nitric oxide and enables retinoblastoma growth. We show that coxsackievirus and adenovirus receptor (CXADR) is the cell-surface receptor for SFRP2 in retinoblastoma cells; that CXADR functions as a "dependence receptor," transmitting a growth-inhibitory signal in the absence of SFRP2; and that the balance between SFRP2 and CXADR determines nitric oxide production.
View Article and Find Full Text PDFEwing sarcoma is a cancer of bone and soft tissue in children driven by EWS::ETS fusion, most commonly EWS::FLI1. Because current cytotoxic chemotherapies are not improving the survival of those with metastatic or recurrent Ewing sarcoma cases, there is a need for novel and more effective targeted therapies. While EWS::FLI1 is the major driver of Ewing sarcoma, EWS::FLI1 has been difficult to target.
View Article and Find Full Text PDFEwing sarcoma is an aggressive cancer of bone and soft tissue in children. It is characterized by the chromosomal translocation between EWS and an Ets family transcription factor, most commonly FLI1. We recently reported that Ewing sarcoma depends on the autocrine signaling mediated by a cytokine, NELL2.
View Article and Find Full Text PDFBAF chromatin remodeling complexes play important roles in chromatin regulation and cancer. Here, we report that Ewing sarcoma cells are dependent on the autocrine signaling mediated by NELL2, a secreted glycoprotein that has been characterized as an axon guidance molecule. NELL2 uses Robo3 as the receptor to transmit critical growth signaling.
View Article and Find Full Text PDFWe report here that the autocrine signaling mediated by growth and differentiation factor 6 (GDF6), a member of the bone morphogenetic protein (BMP) family of cytokines, maintains Ewing sarcoma growth by preventing Src hyperactivation. Surprisingly, Ewing sarcoma depends on the prodomain, not the BMP domain, of GDF6. We demonstrate that the GDF6 prodomain is a ligand for CD99, a transmembrane protein that has been widely used as a marker of Ewing sarcoma.
View Article and Find Full Text PDFEwing sarcoma is an aggressive cancer of bone and soft tissue in children with poor prognosis. It is characterized by the chromosomal translocation between EWS and an Ets family transcription factor, most commonly FLI-1. EWS-FLI-1 fusion accounts for 85% of Ewing sarcoma cases.
View Article and Find Full Text PDFGrowing evidence supports a general hypothesis that aging and cancer are diseases related to energy metabolism. However, the involvement of Fanconi Anemia (FA) signaling, a unique genetic model system for studying human aging or cancer, in energy metabolism remains elusive. Here, we report that FA complementation group D2 protein (FANCD2) functionally impacts mitochondrial ATP production through its interaction with ATP5α, whereas this relationship was not observed in the mutant FANCD2 (K561R)-carrying cells.
View Article and Find Full Text PDFFanconi Anemia (FA) complementation group D2 protein (FANCD2) is the center of the FA tumor suppressor pathway, which has become an important field of investigation in human aging and cancer. Here we report an overlooked central player in the FA pathway, FANCD2 variant 2 (FANCD2-V2), which appears to perform more potent tumor suppressor-function compared to the known variant of FANCD2, namely, FANCD2-V1. Detailed analysis of the FANCD2 gene structure indicated a proximal and distal polyadenylation site (PAS), associated with V2 and V1 transcripts accordingly.
View Article and Find Full Text PDFMutations in the human RecQ helicase, BLM, causes Bloom Syndrome, which is a rare autosomal recessive disorder and characterized by genomic instability and an increased risk of cancer. Fanconi Anemia (FA), resulting from mutations in any of the 19 known FA genes and those yet to be known, is also characterized by chromosomal instability and a high incidence of cancer. BLM helicase and FA proteins, therefore, may work in a common tumor-suppressor signaling pathway.
View Article and Find Full Text PDFMetabolic profiling has great potential to help the diagnosis and prognosis of cancer patients. Fanconi Anemia (FA) tumor-suppressor signaling has been instrumental in understanding human tumorigenesis. However, this instrumental understanding has never been demonstrated at the metabolic level.
View Article and Find Full Text PDFAn extremely high cancer incidence and the hypersensitivity to DNA crosslinking agents associated with Fanconi Anemia (FA) have marked it to be a unique genetic model system to study human cancer etiology and treatment, which has emerged an intense area of investigation in cancer research. However, there is limited information about the relationship between the mutated FA pathway and the cancer development or/and treatment in patients without FA. Here we analyzed the mutation rates of the seventeen FA genes in 68 DNA sequence datasets.
View Article and Find Full Text PDFNormal DNA replication starts following the stepwise recruitment of replication initiators to assemble Mini-chromosome Maintenance (MCM) 2-7 protein complexes at an adequate amount of DNA replication origins. Under normal conditions, the monoubiquitination of Fanconi Anemia (FA) group D2 protein (FANCD2) occurs in each S-phase of cell cycle, which is the basal level of FANCD2 monoubiquitination. However, little is known regarding the roles of this basal level of monoubiquitinated FANCD2.
View Article and Find Full Text PDFCancer Biol Ther
December 2013
Extremely high cancer incidence in Fanconi anemia (FA) patients has long suggested that the FA signaling pathway is a tumor suppressor pathway. Indeed, our recent findings, for the first time, indicate that the FA pathway plays a significant role in suppressing the development of non-FA human cancer. Also our studies on FA group D2 protein (FANCD2) have, among the first, documented the crosstalks between the FA and Rad6/Rad18 (HHR6) pathways upon DNA damage.
View Article and Find Full Text PDFA compromised Fanconi Anemia (FA) signaling pathway, often resulting from an inactivated FANCD2, was recently recognized to contribute to the development of non-FA human tumors. However, it is largely unknown as to how an impaired FA pathway or an inactivated FANCD2 promotes tumorigenesis. Here we unexpectedly found that ΔNp63 mRNA was expressed at high levels in human cancer cells carrying an impaired FA pathway compared to the corresponding control cells carrying an intact FA pathway.
View Article and Find Full Text PDFEffectiveness of DNA cross-linking drugs in the treatment of bladder cancer suggests that bladder cancer cells may have harbored an insufficient cellular response to DNA cross-link damage, which will sensitize cells to DNA cross-linking agents. Cell sensitivity benefits from deficient DNA damage responses, which, on the other hand, can cause cancer. Many changed cellular signaling pathways are known to be involved in bladder tumorigenesis; however, DNA cross-link damage response pathway [Fanconi anemia (FA) pathway], whose alterations appear to be a plausible cause of the development of bladder cancer, remains an under-investigated area in bladder cancer research.
View Article and Find Full Text PDFWip1, a human protein Ser/Thr phosphatase also called PPM1D, stands for wild type p53 induced phosphatase 1. Emerging evidences indicate that Wip1 can act as an oncogene largely by turning off DNA damage checkpoint responses. Here we report an unrecognized role of Wipl in normally growing cells.
View Article and Find Full Text PDFChemoprevention through dietary intervention is an emerging option to reduce colon cancer mortality. beta-catenin plays an important role in the Wnt signaling cascade that is most commonly dysregulated in colorectal cancer. Our aim was to explore the modulatory effect of silibinin on beta-catenin expression employing 1,2-dimethylhydrazine (DMH) induced colon cancer in male Wistar rats as an experimental model during the different stages of carcinogenesis.
View Article and Find Full Text PDFColorectal malignancies continue to be one of the most frequent and life-threatening diseases throughout the world. Pronyl-lysine, a product obtained from bread crust, is a potent free radical scavenging antioxidant exerting chemopreventive activity by reducing oxidative stress. This study was conducted to investigate the effects of pronyl-lysine supplementation on the formation of colonic precancerous lesions, circulatory lipid peroxidation, and enzymic antioxidant status in 1,2-dimethylhydrazine-induced colon carcinogenesis.
View Article and Find Full Text PDFJ Clin Hypertens (Greenwich)
June 2005
This study assessed and compared the effects of Balsamodendron mukul (an extract of the gum of a small tree) and nifedipine (a calcium-channel-blocking reference drug) on blood pressure, lipids, lipoproteins, and phospholipids in randomly selected patients with essential hypertension. Fifty-seven newly diagnosed hypertensive patients were randomly divided into three groups. They received either single-blind B.
View Article and Find Full Text PDF