Background: Following stroke, changes in neuronal connectivity in tissue surrounding the infarct play an important role in both spontaneous recovery of neurological function and in treatment-induced improvements in function. Microglia and astrocytes influence this process through direct interactions with the neurons and as major determinants of the local tissue environment. Subpopulations of peri-infarct glia proliferate early after stroke providing a possible target to modify recovery.
View Article and Find Full Text PDFDental pulp contains multipotent mesenchymal stem cells that improve outcomes when administered early after temporary middle cerebral artery occlusion in rats. To further assess the therapeutic potential of these cells, we tested whether functional recovery following stroke induced by photothrombosis could be modified by a delayed treatment that was initiated after the infarct attained maximal volume. Photothrombosis induces permanent focal ischemia resulting in tissue changes that better reflect key aspects of the many human strokes in which early restoration of blood flow does not occur.
View Article and Find Full Text PDFBackground: Altered neuronal connectivity in peri-infarct tissue is an important contributor to both the spontaneous recovery of neurological function that commonly develops after stroke and improvements in recovery that have been induced by experimental treatments in animal models. Microglia and astrocytes are primary determinants of the environment in peri-infarct tissue and hence strongly influence the potential for neuronal plasticity. However, the specific roles of these cells and the timing of critical changes in their function are not well understood.
View Article and Find Full Text PDF