Background: Interleukin-37 (IL-37) has anti-inflammatory properties in innate and adaptive immunity. Patients with multiple sclerosis (MS), an autoimmune inflammatory demyelinating disease of the central nervous system (CNS), have increased serum levels of IL-37. However, it is unknown whether IL-37 has an inhibitory effect on ongoing autoimmune neuroinflammation, thus offering a potential MS therapy.
View Article and Find Full Text PDFOver the past few decades, there has been a notable increase in the global burden of central nervous system (CNS) diseases. Despite advances in technology and therapeutic options, neurological and neurodegenerative disorders persist as significant challenges in treatment and cure. Recently, there has been a remarkable surge of interest in extracellular vesicles (EVs) as pivotal mediators of intercellular communication.
View Article and Find Full Text PDFExosomes are extracellular vesicles that originate from endosomes and are released by all cells irrespective of their origin or type. They play an important role in cell communication and can act in an autocrine, endocrine, or paracrine fashion. They are 40-150 nm in diameter and have a similar composition to the cell of origin.
View Article and Find Full Text PDFSuccessful metastasis depends on cell invasion, migration, host immune escape, extravasation, and angiogenesis. The process of cell invasion and migration relies on the dynamic changes taking place in the cytoskeletal components; actin, tubulin and intermediate filaments. This is possible due to the plasticity of the cytoskeleton and coordinated action of all the three, is crucial for the process of metastasis from the primary site.
View Article and Find Full Text PDFConnexin36 (Cx36) is the most abundant connexin in central nervous system neurons. It forms gap junction channels that act as electrical synapses. Similar to chemical synapses, Cx36-containing gap junctions undergo activity-dependent plasticity and complex regulation.
View Article and Find Full Text PDFCalmodulin binding is a nearly universal property of gap junction proteins, imparting a calcium-dependent uncoupling behavior that can serve in an emergency to decouple a stressed cell from its neighbors. However, gap junctions that function as electrical synapses within networks of neurons routinely encounter large fluctuations in local cytoplasmic calcium concentration; frequent uncoupling would be impractical and counterproductive. We have studied the properties and functional consequences of calmodulin binding to the electrical synapse protein Connexin 35 (Cx35 or gjd2b), homologous to mammalian Connexin 36 (Cx36 or gjd2).
View Article and Find Full Text PDFRecent reports highlight the potential tumorigenic role of Dentin Sialophosphoprotein (DSPP) and its cognate partner Matrix Metalloproteinase 20 (MMP-20) in Oral Squamous Cell Carcinomas (OSCCs). However, the function/mechanism of these roles is yet to be fully established. The present study aimed to investigate the effects of DSPP and MMP20 silencing on specific proteins involved in oral cancer cell adhesion, angiogenesis, metastasis, and epithelial-mesenchymal transition (EMT).
View Article and Find Full Text PDFBackground: Matrix metalloproteinases-20 (MMP20) expression is widely regarded as tooth specific, with expression limited to dental hard tissues. Recently, we reported MMP20 expression and interaction with dentin sialophosphoprotein (DSPP), a member of the Small Integrin Binding Ligand N-linked Glycoproteins (SIBLINGs), in human oral squamous cell carcinoma (OSCC) and dysplastic oral premalignant lesions (OPLs), suggesting a role for MMP20-DSPP interaction in oral carcinogenesis.
Methods: This study aimed to survey the expression of MMP20 and its cognate DSPP partner in the breast, colon, prostate, thyroid, and cervical neoplasms.
The expression of proinflammatory cytokines in various malignant neoplasms is widely considered to represent the host immune response to tumor development. The role of interferon (IFN)γ in head and neck squamous cell carcinoma, and its association with endoplasmic reticulum (ER) stress pathways, remains a subject of ongoing investigation. Dentin sialophosphoprotein (DSPP), which is a member of the small integrin‑binding N‑linked glycoproteins family, has been implicated in malignant transformation and invasion of oral squamous cell carcinoma (OSCC).
View Article and Find Full Text PDFDentin sialophosphoprotein (DSPP) is upregulated in various human cancers, including head and neck squamous cell carcinoma. Cancer cells are commonly found under constant endoplasmic reticulum (ER) stress and exhibit increased levels of misfolded proteins, due to gene mutations and a stressful microenvironment. The present study examined the effects of DSPP silencing on the regulation of ER stress and the unfolded protein response (UPR) in oral cancer cells.
View Article and Find Full Text PDFBackground: Recent findings indicate that dentin sialophosphoprotein (DSPP) and matrix metalloproteinase (MMP) 20 interact in oral squamous cell carcinoma (OSCC). The objective of this study was to determine the effects of DSPP/MMP20 gene silencing on oral cancer stem cell (OCSC) markers.
Methods: The expression of well-established OCSC markers: ABCG2; ALDH1; CD133; CD44; BMI1; LGR4, and Podoplanin in DSPP/MMP20-silenced OSCC cell line, OSC2, and controls were assayed by western blot (WB), and flow cytometry techniques.
Equilibrative nucleoside transporters (ENTs) are integral membrane proteins, which reside in plasma membranes of all eukaryotic cells and mediate thermodynamically downhill transport of nucleosides. This process is essential for nucleoside recycling, and also plays a key role in terminating adenosine-mediated cellular signaling. Furthermore, ENTs mediate the uptake of many drugs, including anticancer and antiviral nucleoside analogues.
View Article and Find Full Text PDFAlterations in lipid metabolism and lipoprotein disturbances have played an important role in increasing the risk of cardiovascular mortality and morbidity in diabetes. A drug that has hypoglycemic activity can be used for the treatment of hyperlipidemia also. The present study was carried out to evaluate the hypolipidemic activity of Semecarpus anacardium.
View Article and Find Full Text PDFEvid Based Complement Alternat Med
July 2011
Glucose produced by gluconeogenesis and glycogenolysis plays an important role in aggravating hyperglycemia in diabetes, and altered mitochondrial function is associated with impaired energy production. The present study focuses on the effect of Semecarpus anacardium on carbohydrate metabolism and energy production in diabetic rats. Diabetes was induced by the administration of Streptozotocin at a dose of 50 mg/kg.
View Article and Find Full Text PDFObjectives: Oxidative and nitrosative stress play an important role in the complications of diabetes mellitus. Free radicals are produced when there is an electron leak in the mito-chondria and a change in the mitochondrial membrane potential. The present study was undertaken to investigate the role of Semecarpus anacardium in protecting the mito-chondria by modulating the production of reactive oxygen species and reactive nitrogen species in diabetic rats.
View Article and Find Full Text PDFLeakage of cellular enzymes into the plasma is a clear indication of cell damage. When liver plasma membrane is damaged, a variety of enzymes normally located in the cytosol are released into the blood stream and their estimation is a quantitative marker for the extent of damage. The cytoprotective effect of Semecarpus anacardium was evaluated in rats that were rendered diabetic by administration of streptozotocin at a dose of 50 mg/kg body weight.
View Article and Find Full Text PDF