When inoculated on the surface of soft agar containing nutrients, many species of motile bacteria can grow into a dense population and spread across the surface by a form of motility called swarming. We study the swarming behavior of sp. SM3, a species of bacteria that exhibits a swarm-dependent reduction in symptoms associated with inflammatory bowel disease (IBD).
View Article and Find Full Text PDFBackground: Bacterial growth rate, commonly reported in terms of doubling time, is frequently determined by one of two techniques: either by measuring optical absorption of a growing culture or by taking samples at different times during their growth phase, diluting them, spreading them on agar plates, incubating them, and counting the colonies that form. Both techniques require measurements of multiple repeats, as well careful assessment of reproducibility and consistency. Existing literature using either technique gives a wide range of growth rate values for even the most extensively studied species of bacteria, such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus.
View Article and Find Full Text PDFThe recent discovery of the peritrichous, swarm-competent bacterium Enterobacter sp. SM3 has offered a new opportunity to investigate the connection between bacterial swimming and swarming. Here, we report the run-and-tumble behavior of SM3 as planktonic swimming cells and as swarming cells diluted in liquid medium, drawing comparison between the two states.
View Article and Find Full Text PDFMany species of bacteria change their morphology and behavior under external stresses. In this study, we report transient elongation and swimming motility of a novel Enterobacter sp. strain, SM1_HS2B, in liquid broth under a standard growth condition.
View Article and Find Full Text PDFBio Protoc
September 2021
Bacterial swarming refers to a rapid spread, with coordinated motion, of flagellated bacteria on a semi-solid surface (Harshey, 2003). There has been extensive study on this particular mode of motility because of its interesting biological and physical relevance, ., enhanced antibiotic resistance (Kearns, 2010) and turbulent collective motion ( Steager , 2008 ).
View Article and Find Full Text PDFPowered by flagella, many bacterial species exhibit collective motion on a solid surface commonly known as swarming. As a natural example of active matter, swarming is also an essential biological phenotype associated with virulence, chemotaxis, and host pathogenesis. Physical changes like cell elongation and hyper-flagellation have been shown to accompany the swarming phenotype.
View Article and Find Full Text PDFBackground And Aims: Bacterial swarming, a collective movement on a surface, has rarely been associated with human pathophysiology. This study aims to define a role for bacterial swarmers in amelioration of intestinal stress.
Methods: We developed a polymicrobial plate agar assay to detect swarming and screened mice and humans with intestinal stress and inflammation.
Many species of bacteria have developed effective means to spread on solid surfaces. This study focuses on the expansion of Pseudomonas aeruginosa on an agar gel surface under conditions of minimal evaporation. We report the occurrence and spread of a depletion zone within an expanded colony, where the bacteria laden film becomes thinner.
View Article and Find Full Text PDFSwarmer cells of Caulobacter crescentus have been found to tether to glass at a point on the cell body. The rolling of the freely rotating flagellum near the glass surface causes the cell body to rotate. We describe the discovery of damped oscillations in the rotational speed of these cell bodies.
View Article and Find Full Text PDFBacterial motility under confinement is relevant to both environmental control and the spread of infection. Here, we report observations on Escherichia coli, Enterobacter sp., Pseudomonas aeruginosa, and Bacillus subtilis when they are confined within a thin layer of water around dispersed micrometer-sized particles sprinkled over a semisolid agar gel.
View Article and Find Full Text PDFMeasurements and Langevin dynamics simulations of filamentous viruses driven through solid-state nanopores reveal a superlinear rise in the translocation velocity with driving force. The mobility also scales with the length of the virus in a nontrivial way that depends on the force. These dynamics are consequences of the buckling of the leading portion of a virus as it emerges from the nanopore and is put under compressive stress by the viscous forces it encounters.
View Article and Find Full Text PDFSoft Matter
January 2018
A growing bacterial colony is a dense suspension of an increasing number of cells capable of individual as well as collective motion. After inoculating Pseudomonas aeruginosa over an annular area on an agar plate, we observe the growth and spread of the bacterial population, and model the process by considering the physical effects that account for the features observed. Over a course of 10-12 hours, the majority of bacteria migrate to and accumulate at the edges.
View Article and Find Full Text PDFWe report measurements and analyses of nanopore translocations by fd and M13, two related strains of filamentous virus that are identical except for their charge densities. The standard continuum theory of electrokinetics greatly overestimates the translocation speed and the conductance associated with counterions for both viruses. Furthermore, fd and M13 behave differently from one another, even translocating in opposite directions under certain conditions.
View Article and Find Full Text PDFMany species of bacteria can spread over a moist surface via a particular form of collective motion known as "surface swarming". This form of motility is typically studied by inoculating bacteria on a gel formed by 0.4-1.
View Article and Find Full Text PDFThis paper describes measurement of fluid viscosity using a small ball drop device. It requires as little as 100 μl of fluid. Each measurement can be performed in seconds.
View Article and Find Full Text PDFMany motile microorganisms are able to detect chemical gradients in their surroundings to bias their motion toward more favorable conditions. In this study, we observe the swimming patterns of Caulobacter crescentus, a uniflagellated bacterium, in a linear oxygen gradient produced by a three-channel microfluidic device. Using low-magnification dark-field microscopy, individual cells are tracked over a large field of view and their positions within the oxygen gradient are recorded over time.
View Article and Find Full Text PDFA Caulobacter crescentus swarmer cell is propelled by a helical flagellum, which is rotated by a motor at its base. The motor alternates between rotating in clockwise and counterclockwise directions and spends variable intervals of time in each state. We measure the distributions of these intervals for cells either free swimming or tethered to a glass slide.
View Article and Find Full Text PDFMany cell types can bias their direction of locomotion by coupling to external cues. Characteristics such as how fast a cell migrates and the directedness of its migration path can be quantified to provide metrics that determine which biochemical and biomechanical factors affect directional cell migration, and by how much. To be useful, these metrics must be reproducible from one experimental setting to another.
View Article and Find Full Text PDFBackground: Motility of flagellated bacteria depends crucially on their organelles such as flagella and pili, as well as physical properties of the external medium, such as viscosity and matrix elasticity. We studied the motility of wild-type and two mutant strains of Caulobacter crescentus swarmer cells in two different types of media: a viscous and hyperosmotic glycerol-growth medium mixture and a viscoelastic growth medium, containing polyethylene glycol or polyethylene oxide of different defined sizes.
Results: For all three strains in the medium containing glycerol, we found linear drops in percentage of motile cells and decreases in speed of those that remained motile to be inversely proportional to viscosity.
Using Escherichia coli as a model organism, we studied how water is recruited by a bacterial swarm. A previous analysis of trajectories of small air bubbles revealed a stream of fluid flowing in a clockwise direction ahead of the swarm. A companion study suggested that water moves out of the agar into the swarm in a narrow region centered ∼ 30 μm from the leading edge of the swarm and then back into the agar (at a smaller rate) in a region centered ∼ 120 μm back from the leading edge.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2014
We resolve the 3D trajectory and the orientation of individual cells for extended times, using a digital tracking technique combined with 3D reconstructions. We have used this technique to study the motility of the uniflagellated bacterium Caulobacter crescentus and have found that each cell displays two distinct modes of motility, depending on the sense of rotation of the flagellar motor. In the forward mode, when the flagellum pushes the cell, the cell body is tilted with respect to the direction of motion, and it precesses, tracing out a helical trajectory.
View Article and Find Full Text PDFThe ionic conductance through a nanometer-sized pore in a membrane changes when a biopolymer slides through it, making nanopores sensitive to single molecules in solution. Their possible use for sequencing has motivated numerous studies on how DNA, a semi-flexible polymer, translocates nanopores. Here we study voltage-driven dynamics of the stiff filamentous virus fd with experiments and simulations to investigate the basic physics of polymer translocations.
View Article and Find Full Text PDFA direct consequence of cellular movement and navigation, migration incorporates elements of speed, direction, and persistence of motion. Current techniques to parameterize the trajectory of a chemotaxing cell most commonly pair migration speed with some measure of persistence by calculating MSD, RMS speed, TAD, and/or CI. We address inherent limitations in TAD and CI for comparative analysis by introducing two new analytical tools to quantify persistence: directionality index and directionality time.
View Article and Find Full Text PDFThe separation of target nucleic acid sequences from biological samples has emerged as a significant process in today's diagnostics and detection strategies. In addition to the possible clinical applications, the fundamental understanding of target and sequence specific hybridization on surface modified magnetic beads is of high value. In this paper, we describe a novel microfluidic platform that utilizes a mobile magnetic field in static microfluidic channels, where single stranded DNA (ssDNA) molecules are isolated via nucleic acid hybridization.
View Article and Find Full Text PDF