Publications by authors named "Jay Waldron"

Purpose: The purpose of this study was to determine whether neural stem cell (NSC) sexual dimorphism previously demonstrated in vitro translates in vivo in NSC transplantation experiments and constitutes a defining factor of the transplantation outcome.

Methods: NSCs isolated from the subventricular zone of 2-day-old or 20-month-old male and female rats were grown as neurospheres prior to being transplanted in the striatum of 2-day-old or 20-month-old male and female recipient animals. The outcome of the transplantation and the NSC differentiation status were analyzed 8 weeks later by assessing the expression of the markers doublecortin (DCX) for neuroblasts, glial fibrillary acidic protein (GFAP) for astrocytes, nestin for stem cells, and choline acetyltransferase (ChAT) for neuronal cholinergic phenotype by immunofluorescence.

View Article and Find Full Text PDF

Purpose: Neural stem cell (NSC) transplantation and pharmacologic activation of endogenous neurogenesis are two approaches that trigger a great deal of interest as brain repair strategies. However, the success rate of clinical attempts using stem cells to restore neurologic functions altered either after traumatic brain injury or as a consequence of neurodegenerative disease remains rather disappointing. This suggests that factors affecting the fate of grafted NSCs are largely understudied and remain to be characterized.

View Article and Find Full Text PDF

Purpose: Neural stem cell transplantation as a brain repair strategy is a very promising technology. However, despite many attempts, the clinical success remains very deceiving. Despite clear evidence that sexual dimorphism rules many aspects of human biology, the occurrence of a sex difference in neural stem cell biology is largely understudied.

View Article and Find Full Text PDF

This study examined the possibility that hemispheric differences in stress-induced brain activation vary as a function of sex. Using in-vivo voltammetry, increases in extracellular dopamine release in response to predator odour and tail pinch stress were recorded bilaterally and simultaneously in either the infralimbic cortex or basolateral amygdala. In both stress-sensitive brain regions, significant sex x hemisphere interactions were observed, with males and females showing greater dopamine activation in right-brain and left-brain structures, respectively.

View Article and Find Full Text PDF