Publications by authors named "Jay Vivian"

Placental development involves coordinated expansion and differentiation of trophoblast cell lineages possessing specialized functions. Among the differentiated trophoblast cell lineages are invasive trophoblast cells, which exit the placenta and invade the uterus, where they restructure the uterine parenchyma and facilitate remodeling of uterine spiral arteries. The rat exhibits deep intrauterine trophoblast cell invasion, a feature shared with human placentation, and is also amenable to gene manipulation using genome-editing techniques.

View Article and Find Full Text PDF

The aromatase-Cre recombinase (Cyp19-Cre) transgenic mouse model has been extensively used for placenta-specific gene inactivation. In a pilot study, we observed unexpected phenotypes using this mouse strain, which prompted an extensive characterization of Cyp19-Cre placental phenotypes using ROSA transgenic reporter mice. The two strains were mated to generate bi-transgenic Cyp19-Cre;ROSA mice following a standard transgenic breeding scheme, and placental and fetal tissues were analyzed on embryonic day 17.

View Article and Find Full Text PDF

Introduction: Mitochondrial dysfunction is observed in Alzheimer's disease (AD). Altered mitochondrial respiration, cytochrome oxidase (COX) Vmax, and mitophagy are observed in human subjects and animal models of AD. Models derived from induced pluripotent stem cells (iPSCs) may not recapitulate these phenotypes after reprogramming from differentiated adult cells.

View Article and Find Full Text PDF

Placental development involves coordinated expansion and differentiation of trophoblast cell lineages possessing specialized functions. Among the differentiated trophoblast cell lineages are invasive trophoblast cells, which exit the placenta and invade into the uterus where they restructure the uterine parenchyma and facilitate remodeling of uterine spiral arteries. The rat exhibits deep intrauterine trophoblast cell invasion, a feature shared with human placentation, and is also amenable to gene manipulation using genome editing techniques.

View Article and Find Full Text PDF

Understanding the contributions of mitochondrial genetics to disease pathogenesis is facilitated by a new and unique model-the mitochondrial-nuclear exchange mouse. Here we report the rationale for their development, the methods used to create them, and a brief summary of how MNX mice have been used to understand the contributions of mitochondrial DNA in multiple diseases, focusing on cancer metastasis. Polymorphisms in mtDNA which distinguish mouse strains exert intrinsic and extrinsic effects on metastasis efficiency by altering epigenetic marks in the nuclear genome, changing production of reactive oxygen species, altering the microbiota, and influencing immune responses to cancer cells.

View Article and Find Full Text PDF

Polycystic kidney disease (PKD) is characterized by the formation and progressive enlargement of fluid-filled cysts due to abnormal cell proliferation. Cyclic AMP agonists, including arginine vasopressin, stimulate ERK-dependent proliferation of cystic cells, but not normal kidney cells. Previously, B-Raf proto-oncogene (BRAF), a MAPK kinase kinase that activates MEK-ERK signaling, was shown to be a central intermediate in the cAMP mitogenic response.

View Article and Find Full Text PDF

Kernicterus is a permanent condition caused by brain damage from bilirubin toxicity. Dystonia is one of the most debilitating symptoms of kernicterus and results from damage to the globus pallidus (GP). One potential therapeutic strategy to treat dystonia in kernicterus is to replace lost GP neurons and restore basal ganglia circuits through stem cell transplantation.

View Article and Find Full Text PDF

Erythropoietin (EPO) signaling plays a vital role in erythropoiesis by regulating proliferation and lineage-specific differentiation of murine hematopoietic progenitor cells (HPCs). An important downstream response of EPO signaling is calcium (Ca) influx, which is regulated by transient receptor potential channel (TRPC) proteins, particularly TRPC2 and TRPC6. While EPO induces Ca influx through TRPC2, TRPC6 inhibits the function of TRPC2.

View Article and Find Full Text PDF

DOT1L is essential for embryonic hematopoiesis but the precise mechanisms of its action remain unclear. The only recognized function of DOT1L is histone H3 lysine 79 (H3K79) methylation, which has been implicated in both transcriptional activation and repression. We observed that deletion of the mouse gene (KO) or selective mutation of its methyltransferase domain (MM) can differentially affect early embryonic erythropoiesis.

View Article and Find Full Text PDF

DOT1-like (DOT1L) histone methyltransferase is essential for mammalian erythropoiesis. Loss of DOT1L in knockout (KO) mouse embryos resulted in lethal anemia at midgestational age. The only recognized molecular function of DOT1L is its methylation of histone H3 lysine 79 (H3K79).

View Article and Find Full Text PDF

Invasive trophoblast cells are critical to spiral artery remodeling in hemochorial placentation. Insufficient trophoblast cell invasion and vascular remodeling can lead to pregnancy disorders including preeclampsia, preterm birth, and intrauterine growth restriction. Previous studies in mice identified achaete-scute homolog 2 (ASCL2) as essential to extraembryonic development.

View Article and Find Full Text PDF

Primary cilia are sensory organelles that are essential for eukaryotic development and health. These antenna-like structures are synthesized by intraflagellar transport protein complexes, IFT-B and IFT-A, which mediate bidirectional protein trafficking along the ciliary axoneme. Here using mouse embryonic fibroblasts (MEF), we investigate the ciliary roles of two mammalian orthologues of Chlamydomonas IFT-A gene, IFT139, namely Thm1 (also known as Ttc21b) and Thm2 (Ttc21a).

View Article and Find Full Text PDF

Induced pluripotent stem (iPS) cells are important tools for studying differentiation and for use in patient-specific disease modeling. We present a detailed method for the reprogramming of primary human fibroblasts to induced pluripotent stem cells using Sendai virus. These procedures allow for the efficient generation of multiple high-quality feeder-independent iPS cell lines for a given human fibroblast line.

View Article and Find Full Text PDF

The CRISPR/Cas9 system has enjoyed enormous success and has now become the standard method of generating gene-modified mouse models. The tools for predicting the activity of CRISPR reagents in the mouse embryo are currently limited and not particularly accurate in predicting if a given reagent will be active. Given the time and cost of generating genetically modified mice, it is highly desirable to use CRISPR reagents that are known to be active in the mouse embryo.

View Article and Find Full Text PDF

Prolactin (PRL) signaling has been implicated in the regulation of glucose homeostatic adaptations to pregnancy. In this report, the PRL receptor (Prlr) gene was conditionally disrupted in the pancreas, creating an animal model which proved useful for investigating the biology and pathology of gestational diabetes including its impacts on fetal and placental development. In mice, pancreatic PRLR signaling was demonstrated to be required for pregnancy-associated changes in maternal β cell mass and function.

View Article and Find Full Text PDF

In polycystic kidney disease (PKD), persistent activation of cell proliferation and matrix production contributes to cyst growth and fibrosis, leading to progressive deterioration of renal function. Previously, we showed that periostin, a matricellular protein involved in tissue repair, is overexpressed by cystic epithelial cells of PKD kidneys. Periostin binds αβ-integrins and activates integrin-linked kinase (ILK), leading to Akt/mammalian target of rapamycin (mTOR)-mediated proliferation of human PKD cells.

View Article and Find Full Text PDF

Neonatal hyperbilirubinemia targets specific brain regions and can lead to kernicterus. One of the most debilitating symptoms of kernicterus is dystonia, which results from bilirubin toxicity to the globus pallidus (GP). Stem cell transplantation into the GP to replace lost neurons and restore basal ganglia circuits function is a potential therapeutic strategy to treat dystonia in kernicterus.

View Article and Find Full Text PDF

Mowat-Wilson syndrome is a rare genetic condition characterized by intellectual disability, structural anomalies, and dysmorphic features. It is caused by haploinsufficiency of the gene in chromosome 2q22.3.

View Article and Find Full Text PDF

Mammals share common strategies for regulating reproduction, including a conserved hypothalamic-pituitary-gonadal axis; yet, individual species exhibit differences in reproductive performance. In this report, we describe the discovery of a species-restricted homeostatic control system programming testis growth and function. is a member of the prolactin gene family and its protein product (PLP-J) was discovered as a uterine cytokine contributing to the establishment of pregnancy.

View Article and Find Full Text PDF

Estrogens are essential hormones for the regulation of fertility. Cellular responses to estrogens are mediated by estrogen receptor α (ESR1) and estrogen receptor β (ESR2). In mouse and rat models, disruption of Esr1 causes infertility in both males and females.

View Article and Find Full Text PDF

High levels of bilirubin in infants can cause kernicterus, which includes basal ganglia damage and dystonia. Stem cell transplantation may be an effective treatment for this disease. In this study, we transplanted human neural progenitor cells differentiated toward propriospinal interneurons into the striatum of 20-day-old spontaneously jaundiced (jj) Gunn rats and nonjaundiced (Nj) littermates.

View Article and Find Full Text PDF

The mitochondrial paradigm for common disease proposes that mitochondrial DNA (mtDNA) sequence variation can contribute to disease susceptibility and progression. To test this concept, we developed the Mitochondrial-nuclear eXchange (MNX) model, in which isolated embryonic pronuclei from one strain of species are implanted into an enucleated embryo of a different strain of the same species (, C57BL/6 and C3H/HeN, ) generating a re-constructed zygote harboring nuclear and mitochondrial genomes from different strains. Two-cell embryos are transferred to the ostia of oviducts in CD-1 pseudopregnant mice and developed to term.

View Article and Find Full Text PDF

The progesterone receptor (PGR) is a ligand-activated transcription factor with key roles in the regulation of female fertility. Much has been learned of the actions of PGR signaling through the use of pharmacologic inhibitors and genetic manipulation, using mouse mutagenesis. Characterization of rats with a null mutation at the Pgr locus has forced a reexamination of the role of progesterone in the regulation of the female reproductive cycle.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionr1mb2stpisu6cciaebf38qh9qf1c5ncm): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once