Publications by authors named "Jay Tracy"

Background: In December 2020, the United Kingdom (UK) reported a SARS-CoV-2 Variant of Concern (VoC) which is now named B.1.1.

View Article and Find Full Text PDF

Mitochondrial dysfunction and oxidative stress play an important role in ageing and have been implicated in several age-related neurodegenerative conditions including Alzheimer's disease (AD) and other tauopathies characterized by the presence of intracellular accumulations of the hyperphosphorylated microtubule-associated protein tau. To study the interaction between mitochondrial dysfunction and tau pathology in vivo, we generated a novel mouse model by crossbreeding two existing lines: the Harlequin (Hq) mutant mice which suffer from mitochondrial dysfunction and oxidative stress due to a lack of the mitochondrial apoptosis-inducing factor (AIF), and the P301L tau transgenic mice, a mouse model of human tau pathology. Combined expression of the Hq mouse mutation and the tau transgene in the Tau/Hq double mutant mice led to an increase in tau pathology and apoptotic neurodegeneration when compared to single expression of the two mutations.

View Article and Find Full Text PDF

Converging evidence links abnormally high brain concentrations of amyloid-beta peptides (Abeta) to the pathology of Alzheimer's disease (AD). Lowering brain Abeta levels, therefore, is a therapeutic strategy for the treatment of AD. Neuronal neprilysin upregulation led to increased degradation of Abeta, reduced the formation of Abeta-plaques and the associated cytopathology, but whether overexpression of neprilysin can improve cognition is unknown.

View Article and Find Full Text PDF

The accumulation of the beta-amyloid peptide (Abeta) is a central event in the pathogenesis of Alzheimer's disease (AD). Abeta removal from the brain by immune therapy shows promising potential for the treatment of patients with AD, although the mechanisms of the antibody action are incompletely understood. In this study we compared the biological activities of antibodies raised against various Abeta fragments for Abeta reduction in vitro and in vivo.

View Article and Find Full Text PDF

Heat-shock proteins are highly immunogenic. Complexed with an antigen, they act as adjuvants, inducing a humoral and cellular immune response against both the antigen and the chaperone. In this study, we produced an Hsp70-supported vaccine to induce the generation of antibodies against amyloid-beta (Abeta) peptides, the major constituent of beta-amyloid plaques in Alzheimer's disease.

View Article and Find Full Text PDF

Amyloid beta-peptide (Abeta) containing plaques and neurofibrillary tangles (NFT) are the two major histopathological hallmarks of Alzheimer's disease (AD). According to the amyloid cascade hypothesis, deposition of Abeta is an initial and essential step in the pathogenesis of AD, and formation of NFT has been proposed to be caused by increased Abeta levels. Several previous studies revealed that Abeta plaque formation can be reduced or even prevented by active immunization with Abeta preparations or by administration of Abeta-specific antibodies.

View Article and Find Full Text PDF

Accumulation in brain of the beta-amyloid peptide (Abeta) is considered as crucial pathogenic event causing Alzheimer's disease (AD). Anti-Abeta immune therapy is a powerful means for Abeta clearance from the brain. We recently showed that intravenous injections of anti-Abeta antibodies led to reduction, elevation or no change in brain Abeta42 concentrations of an AD mouse model.

View Article and Find Full Text PDF

A 30 cM broad genomic region on the long arm of chromosome 10 at 80 cM shows significant and consistent linkage with AD and with plasma concentration of the beta-amyloid peptide 1-42 (Abeta42). The PLAU gene, which is involved in the production and degradation of Abeta42, maps to that region and is therefore a strong positional candidate for association with sporadic AD. We analyzed the non-synonymous single nucleotide polymorphism (SNP) rs2227564 in two independent case-control series from Switzerland and Greece and investigated the influence of this SNP on cognition in elderly individuals.

View Article and Find Full Text PDF

Abnormally high concentrations of beta-amyloid peptide (Abeta) and amyloid plaque formation in Alzheimer's disease (AD) may be caused either by increased generation or by decreased degradation of Abeta. Therefore, activation of mechanisms that lower brain Abeta levels is considered valuable for AD therapy. Neuronal upregulation of neprilysin (NEP) in young transgenic mice expressing the AD-causing amyloid precursor protein mutations (SwAPP) led to reduction of brain Abeta levels and delayed Abeta plaque deposition.

View Article and Find Full Text PDF

To test whether antibodies against beta-amyloid are effective in slowing progression of Alzheimer's disease, we assessed cognitive functions in 30 patients who received a prime and a booster immunization of aggregated Abeta(42) over a 1 year period in a placebo-controlled, randomized trial. Twenty patients generated antibodies against beta-amyloid, as determined by tissue amyloid plaque immunoreactivity assay. Patients who generated such antibodies showed significantly slower rates of decline of cognitive functions and activities of daily living, as indicated by the Mini Mental State Examination, the Disability Assessment for Dementia, and the Visual Paired Associates Test of delayed recall from the Wechsler Memory Scale, as compared to patients without such antibodies.

View Article and Find Full Text PDF

Background: Tissue engineering of viable, autologous cardiovascular constructs with the potential to grow, repair, and remodel represents a promising new concept for cardiac surgery, especially for pediatric patients. Currently, vascular myofibroblast cells (VC) represent an established cell source for cardiovascular tissue engineering. Cell isolation requires the invasive harvesting of venous or arterial vessel segments before scaffold seeding, a technique that may not be preferable, particularly in pediatric patients.

View Article and Find Full Text PDF

Background: We previously demonstrated the successful tissue engineering and implantation of functioning autologous heart valves based on vascular-derived cells. Human marrow stromal cells (MSC) exhibit the potential to differentiate into multiple cell-lineages and can be easily obtained clinically. The feasibility of creating tissue engineered heart valves (TEHV) from MSC as an alternative cell source, and the impact of a biomimetic in vitro environment on tissue differentiation was investigated.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionmj01ot4juhid4hpmqa4red0a8js900lm): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once