To overtake competitors, microbes produce and secrete secondary metabolites that kill neighbouring cells and sequester nutrients. This metabolite-mediated competition probably evolved in complex microbial communities in the presence of viral pathogens. We therefore hypothesized that microbes secrete natural products that make competitors sensitive to phage infection.
View Article and Find Full Text PDFLife has existed on Earth for most of the planet's history, yet major gaps and unresolved questions remain about how it first arose and persisted. Early Earth posed numerous challenges for life, including harsh and fluctuating environments. Today, many organisms cope with such conditions by entering a reversible state of reduced metabolic activity, a phenomenon known as dormancy.
View Article and Find Full Text PDFMitigating climate change in soil ecosystems involves complex plant and microbial processes regulating carbon pools and flows. Here, we advocate for the use of soil microbiome interventions to help increase soil carbon stocks and curb greenhouse gas emissions from managed soils. Direct interventions include the introduction of microbial strains, consortia, phage, and soil transplants, whereas indirect interventions include managing soil conditions or additives to modulate community composition or its activities.
View Article and Find Full Text PDFThis paper is a call to action. By publishing concurrently across journals like an emergency bulletin, we are not merely making a plea for awareness about climate change. Instead, we are demanding immediate, tangible steps that harness the power of microbiology and the expertise of researchers and policymakers to safeguard the planet for future generations.
View Article and Find Full Text PDFThis paper is a call to action. By publishing concurrently across journals like an emergency bulletin, we are not merely making a plea for awareness about climate change. Instead, we are demanding immediate, tangible steps that harness the power of microbiology and the expertise of researchers and policymakers to safeguard the planet for future generations.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
November 2024
This paper is a call to action. By publishing concurrently across journals like an emergency bulletin, we are not merely making a plea for awareness about climate change. Instead, we are demanding immediate, tangible steps that harness the power of microbiology and the expertise of researchers and policymakers to safeguard the planet for future generations.
View Article and Find Full Text PDFThis paper is a call to action. By publishing concurrently across journals like an emergency bulletin, we are not merely making a plea for awareness about climate change. Instead, we are demanding immediate, tangible steps that harness the power of microbiology and the expertise of researchers and policymakers to safeguard the planet for future generations.
View Article and Find Full Text PDFAlong the river-sea continuum, microorganisms are directionally dispersed by water flow while being exposed to strong environmental gradients. To compare the two assembly mechanisms that may strongly and differently influence metacommunity dynamics, namely homogenizing dispersal and heterogeneous selection, we characterized the total (16S rRNA gene) and putatively active (16S rRNA transcript) bacterial communities in the Pearl River-South China Sea Continuum, during the wet (summer) and dry (winter) seasons using high-throughput sequencing. Moreover, well-defined sampling was conducted by including freshwater, oligohaline, mesohaline, polyhaline, and marine habitats.
View Article and Find Full Text PDFTo overtake competitors, microbes produce and secrete secondary metabolites that kill neighboring cells and sequester nutrients. This natural product-mediated competition likely evolved in complex microbial communities that included viral pathogens. From this ecological context, we hypothesized that microbes secrete metabolites that "weaponize" natural pathogens (i.
View Article and Find Full Text PDFBackground: Freshwater sediment microbes are crucial decomposers that play a key role in regulating biogeochemical cycles and greenhouse gas emissions. They often exhibit a highly ordered structure along depth profiles. This stratification not only reflects redox effects but also provides valuable insights into historical transitions, as sediments serve as important archives for tracing environmental history.
View Article and Find Full Text PDFBiologists have long sought to quantify the number of species on Earth. Often missing from these efforts is the contribution of microorganisms, the smallest but most abundant form of life on the planet. Despite recent large-scale sampling efforts, estimates of global microbial diversity span many orders of magnitude.
View Article and Find Full Text PDFDormancy is an adaptation to living in fluctuating environments. It allows individuals to enter a reversible state of reduced metabolic activity when challenged by unfavorable conditions. Dormancy can also influence species interactions by providing organisms with a refuge from predators and parasites.
View Article and Find Full Text PDFSpore-forming bacteria are prevalent in mammalian guts and have implications for host health and nutrition. The production of dormant spores is thought to play an important role in the colonization, persistence, and transmission of these bacteria. Spore formation also modifies interactions among microorganisms such as infection by phages.
View Article and Find Full Text PDFOrganisms have evolved different mechanisms in response to periods of environmental stress, including dormancy - a reversible state of reduced metabolic activity. Transitions to and from dormancy can be random or induced by changes in environmental conditions. Prior theoretical work has shown that stochastic transitioning between active and dormant states at the individual level can maximize fitness at the population level.
View Article and Find Full Text PDFMovement is critical for the fitness of organisms, both large and small. It dictates how individuals acquire resources, evade predators, exchange genetic material, and respond to stressful environments. Movement also influences ecological and evolutionary dynamics at higher organizational levels, such as populations and communities.
View Article and Find Full Text PDFMicroorganisms can help plants and animals contend with abiotic stressors, but why they provide such benefits remains unclear. Here we investigated byproduct benefits, which occur when traits that increase the fitness of one species provide incidental benefits to another species with no direct cost to the provider. In a greenhouse experiment, microbial traits predicted plant responses to soil moisture such that bacteria with self-beneficial traits in drought increased plant early growth, size at reproduction, and chlorophyll concentration under drought, while bacteria with self-beneficial traits in well-watered environments increased these same plant traits in well-watered soils.
View Article and Find Full Text PDFMethane oxidizing microorganisms (methanotrophs) are ubiquitous in the environment and represent a major sink for the greenhouse gas methane (CH). Recent studies have demonstrated methanotrophs are abundant and contribute to CH dynamics in caves. However, very little is known about what controls the distribution and abundance of methanotrophs in subterranean ecosystems.
View Article and Find Full Text PDFMicrobes regulate the composition and turnover of organic matter. Here we developed a framework called Energy-Diversity-Trait integrative Analysis to quantify how dissolved organic matter and microbes interact along global change drivers of temperature and nutrient enrichment. Negative and positive interactions suggest decomposition and production processes of organic matter, respectively.
View Article and Find Full Text PDF