Publications by authors named "Jay Read"

Purpose: Time to antibiotic administration (TTA) in <60 minutes for children with neutropenic fever presenting to an emergency room is associated with reduced incidence of sepsis and intensive care admission. As such, TTA is used as a national quality metric for pediatric oncology patients. At our center, in 2020, 19% of the hospitalized patients with a new fever encounter were receiving antibiotics in <60 minutes, prompting a multidisciplinary approach to reach a goal of >90% in all pediatric patients with cancer with a new fever.

View Article and Find Full Text PDF

Blinatumomab, a bispecific T cell engager that binds CD19 in leukemic cells and CD3 in cytotoxic T cells and leads to leukemic blast lysis, is often used in pediatric patients with relapsed/refractory (R/R) B cell acute lymphoblastic leukemia (B-ALL) prior to allogeneic hematopoietic cell transplantation (allo-HCT). Concerns about the potential risk of blinatumomab-related immune-mediated toxicities after allo-HCT have not been adequately addressed. These include graft-versus-host disease (GVHD), delayed engraftment, and graft failure or rejection.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cell (CAR-T) therapy represents a revolutionary treatment for patients with relapsed/refractory hematologic malignancies. However, its use can result in significant toxicities, including cytokine release syndrome (CRS), a potentially life-threatening clinical syndrome resulting from the release of proinflammatory cytokines upon T cell activation. In addition, patients who develop CRS often experience prolonged cytopenias, and those with the most severe CRS also have the longest delays in full marrow recovery.

View Article and Find Full Text PDF

Wnt/β-catenin signaling is active in small subpopulations of Ewing sarcoma cells, and these cells display a more metastatic phenotype, in part due to antagonism of EWS-FLI1-dependent transcriptional activity. Importantly, these β-catenin-activated Ewing sarcoma cells also alter secretion of extracellular matrix (ECM) proteins. We thus hypothesized that, in addition to cell-autonomous mechanisms, Wnt/β-catenin-active tumor cells might contribute to disease progression by altering the tumor microenvironment (TME).

View Article and Find Full Text PDF

We report three new cases of a germline heterozygous gain-of-function missense (p.(Met1141Lys)) mutation in the C2 domain of phospholipase C gamma 2 (PLCG2) associated with symptoms consistent with previously described auto-inflammation and phospholipase Cγ2 (PLCγ2)-associated antibody deficiency and immune dysregulation (APLAID) syndrome and pediatric common variable immunodeficiency (CVID). Functional evaluation showed platelet hyper-reactivity, increased B cell receptor-triggered calcium influx and ERK phosphorylation.

View Article and Find Full Text PDF

Background: Patients with DLBCL exhibit widely divergent outcomes despite harboring histologically identical tumors. Currently, GEP and IHC algorithms assign patients to 1 of 2 main subtypes: germinal center B cell-like (GCB), or activated B cell-like (ABC), the latter of which historically carries a less favorable prognosis. However, it remains controversial as to whether these prognostic groupings remain valid in the era of rituximab therapy.

View Article and Find Full Text PDF

In the United States, liver allograft allocation is strictly regulated. Local centers have the first option to accept a donor liver; this is followed by regional allocation for those donor livers not used locally and then by national allocation for those donor livers not accepted regionally. This study reviews the outcomes of all liver allografts used over 6 years (2001-2007) and evaluates initial and long-term function stratified by the geographic source of the donor liver allograft.

View Article and Find Full Text PDF

In comparison with the large number of nonribosomal peptide synthetases (NRPSs) that release their peptide products by hydrolytic cleavage of the peptide carrier protein (PCP) bound thioester, there are relatively few NRPSs that have been shown to use a nicotinamide cofactor to reduce this PCP-peptidyl thioester to an aldehyde or imine moiety. This work describes the first example of a reductase domain within a NRPS scaffold shown to reduce a PCP-peptidyl thioester to the corresponding primary alcohol, via an aldehyde intermediate, using two equivalents of reduced nicotinamide adenine dinucleotide phosphate (NADPH). By employing a ketone mimic of the aldehyde intermediate, as well as a specifically deuterated NADPH, it was further demonstrated that the pro-S hydride of the cofactor is transferred to the re face of the carbonyl group.

View Article and Find Full Text PDF

[reaction: see text] A chemoenzymatic synthesis of ADP-D-glycero-beta-D-manno-heptose (ADP-D,D-Hep) is described in which D,D-Hep 7-phosphate is converted to ADP-D,D-Hep by two biosynthetic enzymes. This strategy allows access to the 6''-deuterated analogue, which upon incubation with the epimerase showed complete retention of the isotopic label at the 6''-position. This provides evidence for a direct oxidation mechanism in which the hydride initially transferred to the NADP+ cofactor is subsequently returned to the same carbon in a nonstereospecific manner.

View Article and Find Full Text PDF

The first positive evidence for the utilization of a direct C-6' ' oxidation/reduction mechanism by ADP-l-glycero-d-manno-heptose 6-epimerase is reported here. The epimerase (HldD or AGME, formerly RfaD) operates in the biosynthetic pathway of l-glycero-d-manno-heptose, which is a conserved sugar in the core region of lipopolysaccharide (LPS) of Gram-negative bacteria. The stereochemical inversion catalyzed by the epimerase is interesting as it occurs at an "unactivated" stereocenter that lacks an acidic C-H bond, and therefore, a direct deprotonation/reprotonation mechanism cannot be employed.

View Article and Find Full Text PDF

ADP-l-glycero-d-manno-heptose 6-epimerase (AGME, RfaD) is a bacterial enzyme that is involved in lipopolysaccharide biosynthesis and interconverts ADP-beta-l-glycero-d-manno-heptose (ADP-l,d-Hep) with ADP-beta-d-glycero-d-manno-heptose (ADP-d,d-Hep). AGME is known to require a tightly bound NADP+ cofactor for activity and presumably employs a mechanism involving transient oxidation of the substrate. Four mechanistic possibilities are considered that involve transient oxidation at either C-7' ', C-6' ', or C-4' ' of the heptose nucleotide.

View Article and Find Full Text PDF