Boston Children's Hospital has established a genomic sequencing and analysis research initiative to improve clinical care for pediatric rare disease patients. Through the Children's Rare Disease Collaborative (CRDC), the hospital offers CLIA-grade exome and genome sequencing, along with other sequencing types, to patients enrolled in specialized rare disease research studies. The data, consented for broad research use, are harmonized and analyzed with CRDC-supported variant interpretation tools.
View Article and Find Full Text PDFTissue damage and repair are hallmarks of inflammation. Despite a wealth of information on the mechanisms that govern tissue damage, mechanistic insight into how inflammation affects repair is lacking. Here, we investigated how interferons influence tissue repair after damage to the intestinal mucosa.
View Article and Find Full Text PDFPatient-derived organoids provide a unique model system to explore disease-causing mutations ex vivo. By using organoids from duodenal or colonic biopsies of pediatric patients with intestinal epithelial disorders, we can directly assay the patient cells to tailor treatment to their unique disease state. The advent of organoid technology from patients with severe intestinal disorders such as Congenital Diarrhea Enteropathies (CoDE) and Very-Early-Onset Inflammatory Bowel Disease (VEO-IBD) has allowed for rapid advances in the understanding of and the treatment of these monogenic disorders.
View Article and Find Full Text PDFBackground And Objective: The tissue morphology of the intestinal surface is architecturally complex with finger-like projections called villi, and glandular structures called crypts. The ratio of villus height-to-crypt depth ratio (Vh:Cd) is used to quantitatively assess disease severity and response to therapy for intestinal enteropathies, such as celiac disease and is currently quantified manually. Given the time required, manual Vh:Cd measurements have largely been limited to clinical trials and are not used widely in clinical practice.
View Article and Find Full Text PDFCongenital diarrheas and enteropathies (CODE) are a group of rare, heterogenous, monogenic disorders that lead to chronic diarrhea in infancy. Definitive treatment is rarely available, and supportive treatment is the mainstay. Nutritional management in the form of either specialized formulas, restrictive diet, or parenteral nutrition support in CODE with poor enteral tolerance is the cornerstone of CODE treatment and long-term growth.
View Article and Find Full Text PDFBackground & Aims: Humans with WNT2B deficiency have severe intestinal disease, including significant inflammatory injury, highlighting a critical role for WNT2B. We sought to understand how WNT2B contributes to intestinal homeostasis.
Methods: We investigated the intestinal health of Wnt2b knock out (KO) mice.
Monogenetic variants are responsible for a range of congenital human diseases. Variants in genes that are important for intestinal epithelial function cause a group of disorders characterized by severe diarrhea and loss of nutrient absorption called congenital diarrheas and enteropathies (CODEs). CODE-causing genes include nutrient transporters, enzymes, structural proteins, and vesicular trafficking proteins in intestinal epithelial cells.
View Article and Find Full Text PDFMicrovillus inclusion disease (MVID), caused by loss-of-function mutations in the motor protein myosin Vb (MYO5B), is a severe infantile disease characterized by diarrhea, malabsorption, and acid/base instability, requiring intensive parenteral support for nutritional and fluid management. Human patient-derived enteroids represent a model for investigation of monogenic epithelial disorders but are a rare resource from MVID patients. We developed human enteroids with different loss-of function MYO5B variants and showed that they recapitulated the structural changes found in native MVID enterocytes.
View Article and Find Full Text PDFThe number of studies investigating the human gastrointestinal tract using various single-cell profiling methods has increased substantially in the past few years. Although this increase provides a unique opportunity for the generation of the first comprehensive Human Gut Cell Atlas (HGCA), there remains a range of major challenges ahead. Above all, the ultimate success will largely depend on a structured and coordinated approach that aligns global efforts undertaken by a large number of research groups.
View Article and Find Full Text PDFImportance: Newborn genome sequencing (NBSeq) can detect infants at risk for treatable disorders currently undetected by conventional newborn screening. Despite broad stakeholder support for NBSeq, the perspectives of rare disease experts regarding which diseases should be screened have not been ascertained.
Objective: To query rare disease experts about their perspectives on NBSeq and which gene-disease pairs they consider appropriate to evaluate in apparently healthy newborns.
Background And Aims: WNT2B is a canonical Wnt ligand previously thought to be fully redundant with other Wnts in the intestinal epithelium. However, humans with WNT2B deficiency have severe intestinal disease, highlighting a critical role for WNT2B. We sought to understand how WNT2B contributes to intestinal homeostasis.
View Article and Find Full Text PDFUnlabelled: Microvillus Inclusion Disease (MVID), caused by loss-of-function mutations in the motor protein Myosin Vb (MYO5B), is a severe infantile disease characterized by diarrhea, malabsorption, and acid-base instability, requiring intensive parenteral support for nutritional and fluid management. Human patient-derived enteroids represent a model for investigation of monogenic epithelial disorders but are a rare resource from MVID patients. We developed human enteroids with different loss-of function MYO5B variants and showed that they recapitulated the structural changes found in native MVID enterocytes.
View Article and Find Full Text PDFReactive oxygen species (ROS) regulate the activities of inflammasomes, which are innate immune signaling organelles that induce pyroptosis. The mechanisms by which ROS control inflammasome activities are unclear and may be multifaceted. Herein, we report that the protein gasdermin D (GSDMD), which forms membrane pores upon cleavage by inflammasome-associated caspases, is a direct target of ROS.
View Article and Find Full Text PDFMonogenic intestinal epithelial disorders, also known as congenital diarrheas and enteropathies (CoDEs), are a group of rare diseases that result from mutations in genes that primarily affect intestinal epithelial cell function. Patients with CoDE disorders generally present with infantile-onset diarrhea and poor growth, and often require intensive fluid and nutritional management. CoDE disorders can be classified into several categories that relate to broad areas of epithelial function, structure, and development.
View Article and Find Full Text PDFNeuroepithelial crosstalk is critical for gut physiology. However, the mechanisms by which sensory neurons communicate with epithelial cells to mediate gut barrier protection at homeostasis and during inflammation are not well understood. Here, we find that Nav1.
View Article and Find Full Text PDFEpithelial cells lining mucosal surfaces of the gastrointestinal and respiratory tracts uniquely express ERN2/IRE1β, a paralogue of the most evolutionarily conserved endoplasmic reticulum stress sensor, ERN1/IRE1α. How ERN2 functions at the host-environment interface and why a second paralogue evolved remain incompletely understood. Using conventionally raised and germ-free Ern2-/- mice, we found that ERN2 was required for microbiota-induced goblet cell maturation and mucus barrier assembly in the colon.
View Article and Find Full Text PDFThe development of cell polarity in epithelia, is critical for tissue morphogenesis and vectorial transport between the environment and the underlying tissue. Epithelial polarity is defined by the development of distinct plasma membrane domains: the apical membrane interfacing with the exterior lumen compartment, and the basolateral membrane directly contacting the underlying tissue. The generation of polarity is a tightly regulated process, both spatially and temporally, involving changes in the distribution of plasma membrane lipids, localization of apical and basolateral membrane proteins, and vesicular trafficking.
View Article and Find Full Text PDFIntroduction: Diseases such as celiac disease, environmental enteric dysfunction, infectious gastroenteritis, type II diabetes and inflammatory bowel disease are associated with increased gut permeability. Dual sugar absorption tests, such as the lactulose to rhamnose ratio (L:R) test, are the current standard for measuring gut permeability. Although easy to administer in adults, the L:R test has a number of drawbacks.
View Article and Find Full Text PDF