Emergent magnetic phenomena at interfaces represent a frontier in materials science, pivotal for advancing technologies in spintronics and magnetic storage. In this Letter, we utilize a suite of advanced X-ray spectroscopic and scattering techniques to investigate emergent interfacial ferromagnetism in oxide superlattices composed of antiferromagnetic CaMnO and paramagnetic CaRuO. Our findings demonstrate that ferromagnetism exhibits an asymmetric profile and may extend beyond the interfacial layer into multiple unit cells of CaMnO.
View Article and Find Full Text PDFCorrelated electron materials (CEMs) host a rich variety of condensed matter phases. Vanadium dioxide (VO) is a prototypical CEM with a temperature-dependent metal-to-insulator (MIT) transition with a concomitant crystal symmetry change. External control of MIT in VO-especially without inducing structural changes-has been a long-standing challenge.
View Article and Find Full Text PDF