Experience- and activity-dependent transcription is a candidate mechanism to mediate development and refinement of specific cortical circuits. Here, we demonstrate that the activity-dependent transcription factor myocyte enhancer factor 2C (MEF2C) is required in both presynaptic layer (L) 4 and postsynaptic L2/3 mouse (male and female) somatosensory (S1) cortical neurons for development of this specific synaptic connection. While postsynaptic deletion of weakens L4 synaptic inputs, it has no effect on inputs from local L2/3, contralateral S1, or the ipsilateral frontal/motor cortex.
View Article and Find Full Text PDFLafora disease (LD) is a syndrome of progressive myoclonic epilepsy and cumulative neurocognitive deterioration caused by recessively inherited genetic lesions of EPM2A (laforin) or NHLRC1 (malin). Neuropsychiatric symptomatology in LD is thought to be directly downstream of neuronal and astrocytic polyglucosan aggregates, termed Lafora bodies (LBs), which faithfully accumulate in an age-dependent manner in all mouse models of LD. In this study, we applied home-cage monitoring to examine the extent of neurobehavioral deterioration in a model of malin-deficient LD as a means to identify robust preclinical endpoints that may guide the selection of novel genetic treatments.
View Article and Find Full Text PDFSpiny projection neurons (SPNs) of the striatum are critical in integrating neurochemical information to coordinate motor and reward-based behavior. Mutations in the regulatory transcription factors expressed in SPNs can result in neurodevelopmental disorders (NDDs). Paralogous transcription factors Foxp1 and Foxp2, which are both expressed in the dopamine receptor 1 (D1) expressing SPNs, are known to have variants implicated in NDDs.
View Article and Find Full Text PDFLong-range glutamatergic inputs originating from the cortex and thalamus are indispensable for striatal development, providing the foundation for motor and cognitive functions. Despite their significance, transcriptional regulation governing these inputs remains largely unknown. We investigated the role of a transcription factor encoded by a high-risk autism-associated gene, , in sculpting glutamatergic inputs onto spiny projection neurons (SPNs) within the striatum.
View Article and Find Full Text PDFLittle is known of the brain mechanisms that mediate sex-specific autism symptoms. Here, we demonstrate that deletion of the autism spectrum disorder (ASD)-risk gene, Pten, in neocortical pyramidal neurons (Pten knockout [KO]) results in robust cortical circuit hyperexcitability selectively in female mice observed as prolonged spontaneous persistent activity states. Circuit hyperexcitability in females is mediated by metabotropic glutamate receptor 5 (mGluR5) and estrogen receptor α (ERα) signaling to mitogen-activated protein kinases (Erk1/2) and de novo protein synthesis.
View Article and Find Full Text PDFLafora Disease (LD) is a syndrome of progressive myoclonic epilepsy and cumulative neurocognitive deterioration caused by recessively inherited genetic lesions of EPM2A (laforin) or NHLRC1 (malin). Neuropsychiatric symptomatology in LD is thought to be directly downstream of neuronal and astrocytic polyglucosan aggregates, termed Lafora bodies (LBs), which faithfully accumulate in an age-dependent manner in all mouse models of LD. In this study, we applied home-cage monitoring to examine the extent of neurobehavioral deterioration in a model of malin-deficient LD, as a means to identify robust preclinical endpoints that may guide the selection of novel genetic treatments.
View Article and Find Full Text PDFAutism manifests differently in males and females and the brain mechanisms that mediate these sex-dependent differences are unknown. Here, we demonstrate that deletion of the ASD-risk gene, in neocortical pyramidal neurons (NSE KO) results in robust hyperexcitability of local neocortical circuits in female, but not male, mice, observed as prolonged, spontaneous persistent activity states (UP states). Circuit hyperexcitability in NSE KO mice is mediated by enhanced and/or altered signaling of metabotropic glutamate receptor 5 (mGluR5) and estrogen receptor α (ERα) to ERK and protein synthesis selectively in deleted female neurons.
View Article and Find Full Text PDFDysregulation of protein synthesis is one of the key mechanisms underlying autism spectrum disorder (ASD). However, the role of a major pathway controlling protein synthesis, the integrated stress response (ISR), in ASD remains poorly understood. Here, we demonstrate that the main arm of the ISR, eIF2α phosphorylation (p-eIF2α), is suppressed in excitatory, but not inhibitory, neurons in a mouse model of fragile X syndrome (FXS; Fmr1).
View Article and Find Full Text PDFThe excitatory neurotransmitter glutamate shapes learning and memory, but the underlying epigenetic mechanism of glutamate regulation in neuron remains poorly understood. Here, we showed that lysine demethylase KDM6B was expressed in excitatory neurons and declined in hippocampus with age. Conditional knockout of KDM6B in excitatory neurons reduced spine density, synaptic vesicle number and synaptic activity, and impaired learning and memory without obvious effect on brain morphology in mice.
View Article and Find Full Text PDFBackground: Sensory impairments commonly occur in patients with autism or intellectual disability. Fragile X syndrome (FXS) is one form of intellectual disability that is often comorbid with autism. In electroencephalographic (EEG) recordings obtained from humans with FXS, the ability of cortical regions to consistently synchronize, or "phase-lock", to modulated auditory stimuli is reduced compared to that of typically developing individuals.
View Article and Find Full Text PDFReduced structural and functional interhemispheric connectivity correlates with the severity of Autism Spectrum Disorder (ASD) behaviors in humans. Little is known of how ASD-risk genes regulate callosal connectivity. Here, we show that , whose loss-of-function leads to Fragile X Syndrome (FXS), cell autonomously promotes maturation of callosal excitatory synapses between somatosensory barrel cortices in mice.
View Article and Find Full Text PDFFragile X syndrome (FXS) is the most common cause of inherited intellectual disability. FXS is caused by functional loss of the Fragile X Protein (FXP), also known as Fragile X Mental Retardation Protein (FMRP). In humans and animal models, loss of FXP leads to sensory hypersensitivity, increased susceptibility to seizures and cortical hyperactivity.
View Article and Find Full Text PDFFragile X syndrome (FXS) is the most common form of inherited intellectual disability and the leading monogenetic cause of autism. One symptom of FXS and autism is sensory hypersensitivity (also called sensory over-responsivity). Perhaps related to this, the audiogenic seizure (AGS) is arguably the most robust behavioral phenotype in the FXS mouse model-the knock-out (KO) mouse.
View Article and Find Full Text PDFElectroencephalogram (EEG) recordings in Fragile X syndrome (FXS) patients have revealed enhanced sensory responses, enhanced resting "gamma frequency" (30-100 Hz) activity, and a decreased ability for sensory stimuli to modulate cortical activity at gamma frequencies. Similar changes are observed in the FXS model mouse - the Fmr1 knockout. These alterations may become effective biomarkers for diagnosis and treatment of FXS.
View Article and Find Full Text PDFExperience and activity refine cortical circuits through synapse elimination, but little is known about the activity patterns and downstream molecular mechanisms that mediate this process. We used optogenetics to drive individual mouse CA1 hippocampal neurons to fire in theta frequency bursts to understand how cell autonomous, postsynaptic activity leads to synapse elimination. Brief (1 hr) periods of postsynaptic bursting selectively depressed AMPA receptor (R) synaptic transmission, or silenced excitatory synapses, whereas more prolonged (24 hr) firing depressed both AMPAR and NMDAR EPSCs and eliminated spines, indicative of a synapse elimination.
View Article and Find Full Text PDFAmyloid-beta protein precursor (APP) and metabolite levels are altered in fragile X syndrome (FXS) patients and in the mouse model of the disorder, mice. Normalization of APP levels in mice ( / mice) rescues many disease phenotypes. Thus, APP is a potential biomarker as well as therapeutic target for FXS.
View Article and Find Full Text PDFDevelopment of proper cortical circuits requires an interaction of sensory experience and genetic programs. Little is known of how experience and specific transcription factors interact to determine the development of specific neocortical circuits. Here, we demonstrate that the activity-dependent transcription factor, Myocyte enhancer factor-2C (Mef2c), differentially regulates development of local versus long-range excitatory synaptic inputs onto layer 2/3 neurons in the somatosensory neocortex in vivo.
View Article and Find Full Text PDFMutations in the transcription factor Forkhead box p1 (FOXP1) are causative for neurodevelopmental disorders such as autism. However, the function of FOXP1 within the brain remains largely uncharacterized. Here, we identify the gene expression program regulated by FoxP1 in both human neural cells and patient-relevant heterozygous Foxp1 mouse brains.
View Article and Find Full Text PDFA single, maternally inherited, X-linked point mutation leading to an arginine to cysteine substitution at amino acid 451 (R451C) of Neuroligin 3 (NLGN3R451C) is a likely cause of autism in two brothers. Knockin mice expressing the Nlgn3R451C mutation in place of wild-type Nlgn3 demonstrate increased inhibitory synaptic strength in somatosensory cortex, resulting in an excitatory/inhibitory (E/I) imbalance that is potentially relevant for autism-associated behavioral deficits characteristic of these mice. We have replicated the increase in evoked inhibitory postsynaptic currents (eIPSCs) onto layer II/III cortical pyramidal neurons.
View Article and Find Full Text PDFThe PI3K enhancer PIKE links PI3K catalytic subunits to group 1 metabotropic glutamate receptors (mGlu1/5) and activates PI3K signaling. The roles of PIKE in synaptic plasticity and the etiology of mental disorders are unknown. Here, we show that increased PIKE expression is a key mediator of impaired mGlu1/5-dependent neuronal plasticity in mouse and fly models of the inherited intellectual disability fragile X syndrome (FXS).
View Article and Find Full Text PDFDistinct isoforms of the PI3K catalytic subunit have specialized functions in the brain, but their role in cognition is unknown. Here, we show that the catalytic subunit p110β plays an important role in prefrontal cortex (PFC)-dependent cognitive defects in mouse models of Fragile X syndrome (FXS), an inherited intellectual disability. FXS is caused by loss of function of the fragile X mental retardation protein (FMRP), which binds and translationally represses mRNAs.
View Article and Find Full Text PDFGABAergic synaptic transmission plays an important role in resetting and synchronizing circadian rhythms in the suprachiasmatic nucleus (SCN). Although the circadian modulation of intrinsic membrane currents and biochemical signaling have been examined in the SCN, the modulation of specific synaptic pathways within the SCN is unexplored. In addition, little is known about the functional properties of these pathways, including which ones involve GABAA receptors (GABAA-Rs).
View Article and Find Full Text PDFBoth short- and long-term roles for the group I metabotropic glutamate receptor number 5 (mGluR5) have been examined for the regulation of cortical glutamatergic synapses. However, how mGluR5 sculpts neocortical networks during development still remains unclear. Using a single cell deletion strategy, we examined how mGluR5 regulates glutamatergic synaptic pathways in neocortical layer 2/3 (L2/3) during development.
View Article and Find Full Text PDFExperience refines synaptic connectivity through neural activity-dependent regulation of transcription factors. Although activity-dependent regulation of transcription factors has been well described, it is unknown whether synaptic activity and local, dendritic regulation of the induced transcripts are necessary for mammalian synaptic plasticity in response to transcription factor activation. Neuronal depolarization activates the myocyte enhancer factor 2 (MEF2) family of transcription factors that suppresses excitatory synapse number.
View Article and Find Full Text PDF