Heavy metals (HMs) are among the most dangerous environmental variables for a variety of life forms, including crops. Accumulation of HMs in consumables and their subsequent transmission to the food web are serious concerns for scientific communities and policy makers. The function of essential plant cellular macromolecules is substantially hampered by HMs, which eventually have a detrimental effect on agricultural yield.
View Article and Find Full Text PDFNicotinamide adenine dinucleotide (NAD) is an essential cofactor of numerous enzymatic reactions found in all living cells. Pyridine nucleotides (NAD and NADH) are also key players in signaling through reactive oxygen species (ROS), being crucial in the regulation of both ROS-producing and ROS-consuming systems in plants. NAD content is a powerful modulator of metabolic integration, protein de-acetylation, and DNA repair.
View Article and Find Full Text PDFArsenic (As) contamination and its adverse consequences on rice agroecosystem are well known. Rice has the credit to feed more than 50% of the world population but concurrently, rice accumulates a substantial amount of As, thereby compromising food security. The gravity of the situation lays in the fact that the population in theAs uncontaminated areas may be accidentally exposed to toxic levels of As from rice consumption.
View Article and Find Full Text PDFExpression pattern of aluminum (Al) tolerance genes is one of the major determinants of Al avoidance/tolerance within plant cultivars. We have performed transcriptome analysis of two contrasting (Al-tolerant, Disang; Al-sensitive, Joymati) cultivars of India's North Eastern region, an indica rice diversity hotspot, on exposure to excess Al treatment in acidic condition. Co-expression analysis and SNPs enrichment analysis proposed the role of both trans-acting and cis-acting polymorphisms in Al signaling in the Al-tolerant cultivar.
View Article and Find Full Text PDFAluminum (Al) toxicity is a serious problem for rice crop productivity in acidic soils worldwide. The present work was conducted to look out for the alteration in ROS homeostasis; metabolic fingerprint; and morphology in two contrasting Indica rice cultivars of North East India (NE India) to Al toxicity. Al stress led to excess accumulation of ROS (HO and O), and this in turn induced ROS mediated cellular damage, as indicated by lipid peroxidation both qualitatively as well as quantitatively.
View Article and Find Full Text PDFMagnesium (Mg) is an important micronutrient for various physiological processes in plants. In this study, putative Magnesium Transporter (MGT) genes have been identified in Solanum lycopersicum, Solanum tuberosum, Brachypodium distachyon, Fagaria vesca, Brassica juncea and were classified into 5 distinct groups based on their sequence homology. MGT genes are very diverse and possess very low sequence identity within its family.
View Article and Find Full Text PDFShortfall of rain that creates drought like situation in non-irrigated agriculture system often limits rice production, necessitating introduction of drought tolerance trait into the cultivar of interest. The mechanism governing drought tolerance is, however, largely unknown, particularly the involvement of miRNAs, the master regulators of biochemical events. In this regard, response study on a drought tolerant rice variety KMJ 1-12-3 to 20% PEG (osmolality- 315 mOsm/kg) as drought stress revealed significant changes in abundance of several conserved miRNAs targeting transcription factors like homeodomain-leucine zipper, MADS box family protein, C2H2 zinc finger protein and Myb, well known for their importance in drought tolerance in plants.
View Article and Find Full Text PDFLipid peroxidation is a physiological indicator of both biotic and abiotic stress responses, hence is often used as a biomarker to assess stress-induced cell damage or death. Here we demonstrate an easy, quick and cheap staining method to assess lipid peroxidation in plant tissues. In this methodology, Schiff's reagent, is used to assay for membrane degradation.
View Article and Find Full Text PDFUpon exposure to abiotic stresses, plants tend to accumulate excessive amounts of reactive oxygen species (ROS) that inturn react with cellular lipids, proteins, and DNA. Therefore, decreasing ROS accumulation is indispensible to survive under stress, which is accomplished by inducing enzymatic and nonenzymatic antioxidant defense pathways. Glutathione, particularly reduced glutathione (GSH), represents a principal anitioxidant that could decrease ROS through scavenging them directly or indirectly through ascorbate-glutathione cycle or GSH peroxidases.
View Article and Find Full Text PDFAluminum (Al) is the third most abundant metal in earth crust, whose chemical form is mainly dependent on soil pH. The most toxic form of Al with respect to plants is Al3+, which exists in soil pH <5. Acidic soil significantly limits crop production mainly due to Al3+ toxicity worldwide, impacting approximately 50% of the world's arable land (in North-Eastern India 80% soil are acidic).
View Article and Find Full Text PDFWe characterized an aquaporin gene from and investigated its physiological roles in heterologous expression systems, yeast and , under high salt and high osmotic stress conditions. In yeast, the expression of enhanced abiotic stress tolerance under high salt and high osmotic conditions. Arabidopsis plants overexpressing also showed better stress tolerance in germination and root growth under high salt and high osmotic stresses than the wild type (WT).
View Article and Find Full Text PDF