Pre-exposure to taste stimuli and certain chemicals can cause water to have a taste. Here we studied further the 'sweet water taste' (SWT) perceived after exposure to the sweet taste inhibitor lactisole. Experiment 1 investigated an incidental observation that presenting lactisole in mixture with sucrose reduced the intensity of the SWT.
View Article and Find Full Text PDFOne key to animal survival is the detection and avoidance of potentially harmful compounds by their bitter taste. Variable numbers of taste 2 receptor genes expressed in the gustatory end organs enable bony vertebrates (Euteleostomi) to recognize numerous bitter chemicals. It is believed that the receptive ranges of bitter taste receptor repertoires match the profiles of bitter chemicals that the species encounter in their diets.
View Article and Find Full Text PDFIn a screening of extracts of selected plants native to Ohio against the human bitterness receptor hTAS2R31, a chloroform-soluble extract of the aerial parts of Solidago canadensis (Canada goldenrod) was determined to have hTAS2R31 antagonistic activity and, thus, was fractionated for isolation of potential bitterness-masking agents. One new labdane diterpenoid, solidagol (1), and six known terpenoids, including two labdane diterpenoids (2 and 3), three clerodane diterpenoids (6β-angeloyloxykolavenic acid, 6β-tigloyloxykolavenic acid, and crotonic acid), and a triterpenoid (longispinogenin), were isolated. Among these compounds, 3β-acetoxycopalic acid (2) was found to be the first member of the labdane diterpene class shown to have inhibitory activity against hTAS2R31 activation (IC50 8 μM).
View Article and Find Full Text PDFThe leaves of the native North American plant, Eriodictyon californicum, were once used to mask the bitter taste of pharmaceuticals, an application currently of importance. Ten flavonoids (1-10) were isolated from the leaves of E. californicum, of which the structure and absolute configuration of 6-methoxyhesperetin (8) were assigned for the first time.
View Article and Find Full Text PDFThe sense of taste is important for providing animals with valuable information about the qualities of food, such as nutritional or harmful nature. Mammals, including humans, can recognize at least five primary taste qualities: sweet, umami (savory), bitter, sour, and salty. Recent studies have identified molecules and mechanisms underlying the initial steps of tastant-triggered molecular events in taste bud cells, particularly the requirement of increased cytosolic free Ca(2+) concentration ([Ca(2+)](c)) for normal taste signal transduction and transmission.
View Article and Find Full Text PDFWe presently investigated 2 novel menthol derivatives GIV1 and GIV2, which exhibit strong cooling effects. In previous human psychophysical studies, GIV1 delivered in a toothpaste medium elicited a cooling sensation that was longer lasting compared with GIV2 and menthol carboxamide (WS-3). In the current study, we investigated the molecular and cellular effects of these cooling agents.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) share a common architecture consisting of seven transmembrane (TM) domains. Various lines of evidence suggest that this fold provides a generic binding pocket within the TM region for hosting agonists, antagonists, and allosteric modulators. Hence, an automated method was developed that allows a fast analysis and comparison of these generic ligand binding pockets across the entire GPCR family by providing the relevant information for all GPCRs in the same format.
View Article and Find Full Text PDFSzechuan peppers contain hydroxy-α-sanshool that imparts desirable tingling, cooling, and numbing sensations. Hydroxy-α-sanshool activates a subset of sensory dorsal root ganglion (DRG) neurons by inhibiting two-pore potassium channels. We presently investigated if a tingle-evoking sanshool analog, isobutylalkenyl amide (IBA), excites rat DRG neurons and, if so, if these neurons are also activated by agonists of TRPM8, TRPA1, and/or TRPV1.
View Article and Find Full Text PDFVariation in taste perception of different chemical substances is a well-known phenomenon in both humans and animals. Recent advances in the understanding of sweet taste signaling have identified a number of proteins involved in this signal transduction. We evaluated the hypothesis that sequence variations occurring in genes encoding taste signaling molecules can influence sweet taste perception in humans.
View Article and Find Full Text PDFHuman bitter taste is mediated by the hTAS2R family of G protein-coupled receptors. The discovery of the hTAS2Rs enables the potential to develop specific bitter receptor antagonists that could be beneficial as chemical probes to examine the role of bitter receptor function in gustatory and nongustatory tissues. In addition, they could have widespread utility in food and beverages fortified with vitamins, antioxidants, and other nutraceuticals, because many of these have unwanted bitter aftertastes.
View Article and Find Full Text PDFHuman sweet taste perception is mediated by the heterodimeric G protein-coupled receptor encoded by the TAS1R2 and TAS1R3 genes. Variation in these genes has been characterized, but the functional consequences of such variation for sweet perception are unknown. We found that two C/T single-nucleotide polymorphisms (SNPs) located at positions -1572 (rs307355) and -1266 (rs35744813) upstream of the TAS1R3 coding sequence strongly correlate with human taste sensitivity to sucrose and explain 16% of population variability in perception.
View Article and Find Full Text PDFBackground: Differences in sweet taste perception among species depend on structural variations of the sweet taste receptor. The commercially used isovanillyl sweetener neohesperidin dihydrochalcone activates the human but not the rat sweet receptor TAS1R2+TAS1R3. Analysis of interspecies combinations and chimeras of rat and human TAS1R2+TAS1R3 suggested that the heptahelical domain of human TAS1R3 is crucial for the activation of the sweet receptor by neohesperidin dihydrochalcone.
View Article and Find Full Text PDFIndividual differences in perception are ubiquitous within the chemical senses: taste, smell, and chemical somesthesis . A hypothesis of this fact states that polymorphisms in human sensory receptor genes could alter perception by coding for functionally distinct receptor types . We have previously reported evidence that sequence variants in a presumptive bitter receptor gene (hTAS2R38) correlate with differences in bitterness recognition of phenylthiocarbamide (PTC) .
View Article and Find Full Text PDFWeight-conscious subjects and diabetics use the sulfonyl amide sweeteners saccharin and acesulfame K to reduce their calorie and sugar intake. However, the intrinsic bitter aftertaste, which is caused by unknown mechanisms, limits the use of these sweeteners. Here, we show by functional expression experiments in human embryonic kidney cells that saccharin and acesulfame K activate two members of the human TAS2R family (hTAS2R43 and hTAS2R44) at concentrations known to stimulate bitter taste.
View Article and Find Full Text PDF