Publications by authors named "Jay Overholser"

The inhibition of checkpoint receptors (PD-1, PD-L1, and CTLA-4) with monoclonal antibodies has shown great benefit in clinical trials for treating cancer patients and has become a mainstay approach in modern cancer immunotherapy. However, only a subset of patients respond to checkpoint monoclonal antibody immunotherapy. Therefore, it is urgent to develop new therapeutic strategies against cancer.

View Article and Find Full Text PDF

The multifunctional protein, voltage-dependent anion channel 1 (VDAC1), is located on the mitochondrial outer membrane. It is a pivotal protein that maintains mitochondrial function to power cellular bioactivities via energy generation. VDAC1 is involved in regulating energy production, mitochondrial oxidase stress, Ca transportation, substance metabolism, apoptosis, mitochondrial autophagy (mitophagy), and many other functions.

View Article and Find Full Text PDF

Blockade of checkpoint receptors with monoclonal antibodies against CTLA-4, PD-1 and PD-L1 has shown great clinical success in several cancer subtypes, yielding unprecedented responses albeit a significant number of patients develop resistance and remain refractory. Both PD-1/PD-L1 and HER-2 signaling pathway inhibitors have limited efficacy and exhibits significant toxicities that limit their use. Ongoing clinical studies support the need for rationale combination of immuno-oncology agents to make a significant impact in the lives of cancer patients.

View Article and Find Full Text PDF

Immunotherapy with monoclonal antibodies to checkpoint inhibitors against the PD-1/PD-L1 signaling pathway is a landmark achievement in cancer therapy. Some anti-PD-1 inhibitors such as nivolumab and pembrolizumab have shown clinical success, in a percentage of patients with prolonged survival rates. However, adverse effects accompany these benefits.

View Article and Find Full Text PDF

Therapeutic blockade of PD-1/PD-L1 signaling with monoclonal antibodies (mAbs) has shown clinical success and activity across a broad set of cancer subtypes. However, monotherapy with PD-1/PD-L1 inhibitors are only effective in a subset of patients and ongoing studies show efficacy of treatment depends on a combinatorial approach. Contrary to mAbs chimeric B-cell cancer vaccines incorporating a "promiscuous" T-cell epitope have the advantage of producing a polyclonal B-cell antibody that can potentially induce memory B- and T-cell responses, while reducing immune evasion and suppression.

View Article and Find Full Text PDF

Purpose: This first-in-human phase I study (NCT01417546) evaluated the safety profile, optimal immunologic/biological dose (OID/OBD), and immunogenicity of the combination of two peptide B-cell epitope vaccines engineered to represent the trastuzumab- and pertuzumab-binding sites. Although trastuzumab and pertuzumab have been approved for clinical use, patients often develop resistance to these therapies. We have advanced a new paradigm in immunotherapy that focuses on humoral responses based on conformational B-cell epitope vaccines.

View Article and Find Full Text PDF

Despite the promise of targeted therapies, there remains an urgent need for effective treatment for esophageal cancer (EC) and triple-negative breast cancer (TNBC). Current FDA-approved drugs have significant problems of toxicity, safety, selectivity, efficacy and development of resistance. In this manuscript, we demonstrate that rationally designed peptide vaccines/mimics are a viable therapeutic strategy for blocking aberrant molecular signaling pathways with high affinity, specificity, potency and safety.

View Article and Find Full Text PDF

The human epidermal growth factor receptor 3 (HER-3/ErbB3) is a unique member of the human epidermal growth factor family of receptors, because it lacks intrinsic kinase activity and ability to heterodimerize with other members. HER-3 is frequently upregulated in cancers with epidermal growth factor receptor (EGFR/HER-1/ErbB1) or human epidermal growth factor receptor 2 (HER-2/ErBB2) overexpression, and targeting HER-3 may provide a route for overcoming resistance to agents that target EGFR or HER-2. We have previously developed vaccines and peptide mimics for HER-1, HER-2 and vascular endothelial growth factor (VEGF).

View Article and Find Full Text PDF

The insulin-like growth factor-1 receptor (IGF-1R) plays a crucial role in cellular growth, proliferation, transformation, and inhibition of apoptosis. A myriad of human cancer types have been shown to overexpress IGF-1R, including breast and pancreatic adenocarcinoma. IGF-1R signaling interferes with numerous receptor pathways, rendering tumor cells resistant to chemotherapy, anti-hormonal therapy, and epidermal growth factor receptor (EGFR, also known as HER-1) and v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2, (ERBB2, best known as HER-2) -targeted therapies.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) is a validated target for several cancers including lung, colorectal, and certain subtypes of breast cancer. Cetuximab targets ligand binding of EGFR, but major problems like high cost, short t1/2, toxicity, and emergence of resistance are associated with the drug. Immunization with EGFR B cell epitopes will train the immune system to produce specific Abs that can kill cancer cells.

View Article and Find Full Text PDF

Vascular endothelial-cadherin (VE-cadherin) is an endothelial cell-specific adhesion molecule that is localized exclusively at cell-cell contacts referred to as adherens junctions. VE-cadherin-mediated adhesion is crucial for proper assembly of vascular structures during angiogenesis as well as for maintenance of a normal vascular integrity. We have shown previously that a monoclonal antibody (BV13) to VE-cadherin not only inhibits the formation of vascular tubes during tumor angiogenesis but also disrupts adherens junctions of normal vasculature with a concomitant increase in vascular permeability.

View Article and Find Full Text PDF