Publications by authors named "Jay M West"

Process analytical technology (PAT) is a fast-growing field within bioprocessing that enables innovation in biological drug manufacturing. This study demonstrates novel PAT methods for monitoring multiple quality attributes simultaneously during the ultrafiltration and diafiltration (UF/DF) process operation, the final step of monoclonal antibody (mAb) purification. Size exclusion chromatography (SEC) methods were developed to measure excipients arginine, histidine, and high molecular weight (HMW) species using a liquid chromatography (LC) system with autosampler for both on-line and at-line PAT modes.

View Article and Find Full Text PDF

N-acylethanolamine acid amidase (NAAA) is an N-terminal nucleophile (Ntn) enzyme with a catalytic cysteine residue that has highest activity at acidic pH. The most prominent substrate hydrolyzed is palmitoylethanolamine (PEA), which regulates inflammation. Inhibitors of NAAA have been shown to increase endogenous levels of PEA, and are of interest as potential treatments for inflammatory disorders and other maladies.

View Article and Find Full Text PDF

The mechanism of inactivation of human enzyme N-acylethanolamine-hydrolyzing acid amidase (hNAAA), with selected inhibitors identified in a novel fluorescent based assay developed for characterization of both reversible and irreversible inhibitors, was investigated kinetically and using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). 1-Isothiocyanatopentadecane (AM9023) was found to be a potent, selective and reversible hNAAA inhibitor, while two others, 5-((biphenyl-4-yl)methyl)-N,N-dimethyl-2H-tetrazole-2-carboxamide (AM6701) and N-Benzyloxycarbonyl-L-serine β-lactone (N-Cbz-serine β-lactone), inhibited hNAAA in a covalent and irreversible manner. MS analysis of the hNAAA/covalent inhibitor complexes identified modification only of the N-terminal cysteine (Cys126) of the β-subunit, confirming a suggested mechanism of hNAAA inactivation by the β-lactone containing inhibitors.

View Article and Find Full Text PDF

A series of N-formyl-α-amino acid esters of β-lactone derivatives structurally related to tetrahydrolipstatin (THL) and O-3841 were synthesized that inhibit human and murine diacylglycerol lipase (DAGL) activities. New ether lipid reporter compounds were developed for an in vitro assay to efficiently screen inhibitors of 1,2-diacyl-sn-glycerol hydrolysis and related lipase activities using fluorescence resonance energy transfer (FRET). A standardized thin layer chromatography (TLC) radioassay of diacylglycerol lipase activity utilizing the labeled endogenous substrate [1″-(14)C]1-stearoyl-2-arachidonoyl-sn-glycerol with phosphorimaging detection was used to quantify inhibition by following formation of the initial product [1″-(14)C]2-arachidonoylglycerol and further hydrolysis under the assay conditions to [1-(14)C]arachidonic acid.

View Article and Find Full Text PDF

X-ray crystallography and small-angle X-ray scattering (SAXS) in solution have been used to show that a mutant aspartate transcarbamoylase exists in an intermediate quaternary structure between the canonical T and R structures. Additionally, the SAXS data indicate a pH-dependent structural alteration consistent with either a pH-induced conformational change or a pH-induced alteration in the T to R equilibrium. These data indicate that this mutant is not a model for the R state, as has been proposed, but rather represents the enzyme trapped along the path of the allosteric transition between the T and R states.

View Article and Find Full Text PDF

N-Acylethanolamine-hydrolyzing acid amidase (NAAA) is a lysosomal enzyme that primarily degrades palmitoylethanolamine (PEA), a lipid amide that inhibits inflammatory responses. We developed a HEK293 cell line stably expressing the NAAA pro-enzyme (zymogen) and a single step chromatographic purification of the protein from the media. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry MALDI-TOF MS analysis of the zymogen (47.

View Article and Find Full Text PDF

Here, we present a study of the conformational changes of the quaternary structure of Escherichia coli aspartate transcarbamoylase, as monitored by time-resolved small-angle X-ray scattering, upon combining with substrates, substrate analogs, and nucleotide effectors at temperatures between 5 and 22 degrees C, obviating the need for ethylene glycol. Time-resolved small-angle X-ray scattering time courses tracking the T-->R structural change after mixing with substrates or substrate analogs appeared to be a single phase under some conditions and biphasic under other conditions, which we ascribe to multiple ligation states producing a time course composed of multiple rates. Increasing the concentration of substrates up to a certain point increased the T-->R transition rate, with no further increase in rate beyond that point.

View Article and Find Full Text PDF

Ankle equinus is the most commonly identified impairment of individuals with spastic hemiplegia (SH). However, it is not clear how equinus at the ankle may contribute to gait deviations at other joints. The purpose of this study was to determine what compensatory gait deviations may occur as a result of an imposed, unilateral equinus constraint.

View Article and Find Full Text PDF

A new system has been developed capable of monitoring conformational changes of the 240s loop of aspartate transcarbamoylase, which are tightly correlated with the quaternary structural transition, with high sensitivity in solution. Pyrene, a fluorescent probe, was conjugated to residue 241 in the 240s loop of aspartate transcarbamoylase to monitor changes in conformation by fluorescence spectroscopy. Pyrene maleimide was conjugated to a cysteine residue on the 240s loop of a previously constructed double catalytic chain mutant version of the enzyme, C47A/A241C.

View Article and Find Full Text PDF

The extreme T and R quaternary structures of the allosteric enzyme aspartate transcarbamoylase have been trapped by encapsulation in a silica sol-gel matrix. Detection of the specific quaternary structure present in the sol-gel was accomplished using a pyrene-labeled version of the enzyme that exhibited monomer fluorescence in the T quaternary structure and excimer fluorescence in the R quaternary structure. Using thin films of the encapsulated enzyme, kinetics of the T and R states could be determined without interconversion of the states.

View Article and Find Full Text PDF

Homotropic cooperativity in Escherichia coli aspartate transcarbamoylase results from the substrate-induced transition from the T to the R state. These two alternate states are stabilized by a series of interdomain and intersubunit interactions. The salt link between Lys-143 of the regulatory chain and Asp-236 of the catalytic chain is only observed in the T state.

View Article and Find Full Text PDF

Here we report the first use of disulfide bond formation to stabilize the R allosteric structure of Escherichia coli aspartate transcarbamoylase. In the R allosteric state, residues in the 240s loop from two catalytic chains of different subunits are close together, whereas in the T allosteric state they are far apart. By substitution of Ala-241 in the 240s loop of the catalytic chain with cysteine, a disulfide bond was formed between two catalytic chains of different subunits.

View Article and Find Full Text PDF