Bacterial genetic diversity is often described solely using base-pair changes despite a wide variety of other mutation types likely being major contributors. Tandem duplication/amplifications are thought to be widespread among bacteria but due to their often-intractable size and instability, comprehensive studies of these mutations are rare. We define a methodology to investigate amplifications in bacterial genomes based on read depth of genome sequence data as a proxy for copy number.
View Article and Find Full Text PDFDespite sharing many of the traits that have allowed the genus Bacillus to gain recognition for its agricultural relevance, the genus Lysinibacillus is not as well-known and studied. The present study employs in vitro, in vivo, in planta, and in silico approaches to characterize Lysinibacillus fusiformis strain S4C11, isolated from the roots of an apple tree in northern Italy. The in vitro and in vivo assays demonstrated that strain S4C11 possesses an antifungal activity against different fungal pathogens, and is capable of interfering with the germination of Botrytis cinerea conidia, as well as of inhibiting its growth through the production of volatile organic molecules.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFNew technologies and analysis methods are enabling genomic structural variants (SVs) to be detected with ever-increasing accuracy, resolution and comprehensiveness. To help translate these methods to routine research and clinical practice, we developed a sequence-resolved benchmark set for identification of both false-negative and false-positive germline large insertions and deletions. To create this benchmark for a broadly consented son in a Personal Genome Project trio with broadly available cells and DNA, the Genome in a Bottle Consortium integrated 19 sequence-resolved variant calling methods from diverse technologies.
View Article and Find Full Text PDFThe DnaB-DnaC complex binds to the unwound DNA within the Escherichia coli replication origin in the helicase loading process, but the biochemical events that lead to its stable binding are uncertain. This study characterizes the function of specific C-terminal residues of DnaC. Genetic and biochemical characterization of proteins bearing F231S and W233L substitutions of DnaC reveals that their activity is thermolabile.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
May 2015
Glucose transporter 1 (GLUT1) is the primary glucose transport protein of the cardiovascular system and astroglia. A recent study proposes that caffeine uncompetitive inhibition of GLUT1 results from interactions at an exofacial GLUT1 site. Intracellular ATP is also an uncompetitive GLUT1 inhibitor and shares structural similarities with caffeine, suggesting that caffeine acts at the previously characterized endofacial GLUT1 nucleotide-binding site.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
May 2014
GLUT1, the primary glucose transport protein in human erythrocytes [red blood cells (RBCs)], also transports oxidized vitamin C [dehydroascorbic acid (DHA)]. A recent study suggests that RBC GLUT1 transports DHA as its primary substrate and that only a subpopulation of GLUT1 transports sugars. This conclusion is based on measurements of cellular glucose and DHA equilibrium spaces, rather than steady-state transport rates.
View Article and Find Full Text PDFHomologous recombination is essential for productive DNA replication particularly under stress conditions. We previously demonstrated a stress-induced recruitment of Rad51 to mitochondria and a critical need for its activity in the maintenance of mitochondrial DNA (mtDNA) copy number. Using the human osteosarcoma cell line U20S, we show in the present study that recruitment of Rad51 to mitochondria under stress conditions requires ongoing mtDNA replication.
View Article and Find Full Text PDFHomologous recombination (HR) plays a critical role in facilitating replication fork progression when the polymerase complex encounters a blocking DNA lesion, and it also serves as the primary mechanism for error-free repair of DNA double strand breaks. Rad51 is the central catalyst of HR in all eukaryotes, and to this point studies of human Rad51 have focused exclusively on events occurring within the nucleus. However, substantial amounts of HR proteins exist in the cytoplasm, yet the function of these protein pools has not been addressed.
View Article and Find Full Text PDFExposure of cells to DNA-damaging agents results in a rapid increase in the formation of subnuclear complexes containing Rad51. To date, it has not been determined to what extent DNA damage-induced cytoplasmic to nuclear transport of Rad51 may contribute to this process. We have analyzed subcellular fractions of HeLa and HCT116 cells and found a significant increase in nuclear Rad51 levels following exposure to a modest dose of ionizing radiation (2 grays).
View Article and Find Full Text PDFThe genetic analysis of essential genes has been generally restricted to the use of conditional mutations, or inactivating chromosomal mutations, which require a complementing plasmid that must either be counterselected or lost to measure a phenotype. These approaches are limited because they do not permit the analysis of mutations suspected to affect a specific function of a protein, nor do they take advantage of the increasing abundance of structural and bioinformatics data for proteins. Using the dnaC gene as an example, we developed a genetic method that should permit the mutational analysis of other essential genes of Escherichia coli and related enterobacteria.
View Article and Find Full Text PDF