Publications by authors named "Jay Konieczka"

In phenylketonuria (PKU) patients, a genetic defect in the enzyme phenylalanine hydroxylase (PAH) leads to elevated systemic phenylalanine (Phe), which can result in severe neurological impairment. As a treatment for PKU, Escherichia coli Nissle (EcN) strain SYNB1618 was developed under Synlogic's Synthetic Biotic™ platform to degrade Phe from within the gastrointestinal (GI) tract. This clinical-stage engineered strain expresses the Phe-metabolizing enzyme phenylalanine ammonia lyase (PAL), catalyzing the deamination of Phe to the non-toxic product trans-cinnamate (TCA).

View Article and Find Full Text PDF

Changes in transcriptional regulatory networks can significantly contribute to species evolution and adaptation. However, identification of genome-scale regulatory networks is an open challenge, especially in non-model organisms. Here, we introduce multi-species regulatory network learning (MRTLE), a computational approach that uses phylogenetic structure, sequence-specific motifs, and transcriptomic data, to infer the regulatory networks in different species.

View Article and Find Full Text PDF

Divergence in gene regulation can play a major role in evolution. Here, we used a phylogenetic framework to measure mRNA profiles in 15 yeast species from the phylum Ascomycota and reconstruct the evolution of their modular regulatory programs along a time course of growth on glucose over 300 million years [corrected]. We found that modules have diverged proportionally to phylogenetic distance, with prominent changes in gene regulation accompanying changes in lifestyle and ploidy, especially in carbon metabolism.

View Article and Find Full Text PDF

Comparative functional genomics studies the evolution of biological processes by analyzing functional data, such as gene expression profiles, across species. A major challenge is to compare profiles collected in a complex phylogeny. Here, we present Arboretum, a novel scalable computational algorithm that integrates expression data from multiple species with species and gene phylogenies to infer modules of coexpressed genes in extant species and their evolutionary histories.

View Article and Find Full Text PDF

Candida glabrata is an emerging human fungal pathogen that is frequently drug tolerant, resulting in difficulties in treatment and a higher mortality in immunocompromised patients. The calcium-activated protein phosphatase calcineurin plays critical roles in controlling drug tolerance, hyphal growth, and virulence in diverse fungal pathogens via distinct mechanisms involving survival in serum or growth at host temperature (37° and higher). Here, we comprehensively studied the calcineurin signaling cascade in C.

View Article and Find Full Text PDF

Efficient and precise genome manipulations can be achieved by the Flp/FRT system of site-specific DNA recombination. Applications of this system are limited, however, to cases when target sites for Flp recombinase, FRT sites, are pre-introduced into a genome locale of interest. To expand use of the Flp/FRT system in genome engineering, variants of Flp recombinase can be evolved to recognize pre-existing genomic sequences that resemble FRT and thus can serve as recombination sites.

View Article and Find Full Text PDF

Arsenic is a naturally occurring metalloid and environmental contaminant. Arsenic exposure in drinking water is reported to cause cancer of the liver, kidneys, lung, bladder, and skin as well as birth defects, including neural tube, facial, and vasculogenic defects. The early embryonic period most sensitive to arsenic includes a variety of cellular processes.

View Article and Find Full Text PDF

Background: Systems Biology research tools, such as Cytoscape, have greatly extended the reach of genomic research. By providing platforms to integrate data with molecular interaction networks, researchers can more rapidly begin interpretation of large data sets collected for a system of interest. BioNetBuilder is an open-source client-server Cytoscape plugin that automatically integrates molecular interactions from all major public interaction databases and serves them directly to the user's Cytoscape environment.

View Article and Find Full Text PDF

Background: Systems biology modeling from microarray data requires the most contemporary structural and functional array annotation. However, microarray annotations, especially for non-commercial, non-traditional biomedical model organisms, are often dated. In addition, most microarray analysis tools do not readily accept EST clone names, which are abundantly represented on arrays.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers conducted a high-throughput study on chicken embryos, mapping the expression of 135 miRNA genes, including five that were previously unknown in chickens.
  • * They found that 84 miRNAs were present before day 5 of embryo development, with many showing different expression levels; expression patterns were linked to specific cell types, organs, and developmental stages, establishing a basis for understanding miRNA functions in an amniote for the first time.
View Article and Find Full Text PDF

As a tool in directed genome manipulations, site-specific recombination is a double-edged sword. Exquisite specificity, while highly desirable, makes it imperative that the target site be first inserted at the desired genomic locale before it can be manipulated. We describe a combination of computational and experimental strategies, based on the tyrosine recombinase Flp and its target site FRT, to overcome this impediment.

View Article and Find Full Text PDF

The recent sequencing and draft assembly of a chicken genome has provided biologists with an invaluable research tool that complements a growing list of additional avian genomic resources. For many researchers, finding and using these resources is challenging, because information is presented through an increasing number of Web sites and browser navigation frequently requires specific knowledge and expertise. This primer provides an overview of online genomic resources for the chicken, including the Ensembl, UCSC, and NCBI annotated chicken genome browsers; expressed sequence tag and in situ hybridization databases; and sources for microarrays, cDNAs, and bacterial artificial chromosomes (BACs).

View Article and Find Full Text PDF

Strategies of directed evolution and combinatorial mutagenesis applied to the Flp site-specific recombinase have yielded recombination systems that utilize bi-specific hybrid target sites. A hybrid site is assembled from two half-sites, each harboring a distinct binding specificity. Satisfying the two specificities by a binary combination of Flp variants, while necessary, may not be sufficient to elicit recombination.

View Article and Find Full Text PDF

We report the solution structure of the Cro protein from bacteriophage P22. Comparisons of its sequence and structure to those of lambda Cro strongly suggest an alpha-to-beta secondary structure switching event during Cro evolution. The folds of P22 Cro and lambda Cro share a three alpha helix fragment comprising the N-terminal half of the domain.

View Article and Find Full Text PDF

The Flp protein from Saccharomyces cerevisiae is one of the site-specific tyrosine family recombinases that are used widely in genomic engineering. As a first step towards mediating directed DNA rearrangements at non-native Flp recombination targets (mFRTs), we have evolved three separate groups of Flp variants that preferentially act on mFRTs containing substitutions at the first, seventh or both positions of the Flp-binding elements. The variants that recombine the double-mutant mFRT contain a subset of the mutations present in those that are active on the single-mutant mFRTs, plus additional mutations.

View Article and Find Full Text PDF