Background: Pathways for intravenously administered gadolinium-based-contrast-agents (GBCAs) entering cerebrospinal-fluid (CSF) circulation in the human brain are not well-understood. The blood-CSF-barrier (BCSFB) in choroid-plexus (CP) has long been hypothesized to be a main entry-point for intravenous-GBCAs into CSF. Most existing studies on this topic were performed in animals and human patients with various diseases.
View Article and Find Full Text PDFIron Dextran is a widely used iron oxide compound to treat iron-deficiency anemia patients in the clinic. Similar to other iron oxide compounds such as Ferumoxytol, it can also be used off-label as an intravascular magnetic resonance imaging (MRI) contrast agent due to its strong iron-induced T2 and T2* shortening effects. In this study, we seek to evaluate the feasibility of using Iron Dextran enhanced multi-echo susceptibility weighted imaging (SWI) MRI at 7T to image arterial and venous blood vessels in the human brain.
View Article and Find Full Text PDFMeningiomas, the most common primary intracranial neoplasms, account for more than one-third of primary CNS tumors. While traditionally viewed as benign, meningiomas can be associated with considerable morbidity, and specific meningioma subgroups display more aggressive behavior with higher recurrence rates. The risk stratification for recurrence has been primarily associated with the World Health Organization (WHO) histopathologic grade and extent of resection.
View Article and Find Full Text PDFVascular pathology is the second leading cause of cognitive impairment and represents a major contributing factor in mixed dementia. However, biomarkers for vascular cognitive impairment and dementia (VCID) are under-developed. Here we aimed to investigate the potential role of CO2 Cerebrovascular Reactivity (CVR) measured with phase-contrast quantitative flow MRI in cognitive impairment and dementia.
View Article and Find Full Text PDFBackground: Capillary hemangiomas are rare vascular lesions that rarely affect the central nervous system. When they present within the spinal canal, they are typically confined intradurally, with intramedullary extension rare. We present a rare case of spinal intramedullary capillary hemangioma, with a systematic review of the literature.
View Article and Find Full Text PDFBackground And Purpose: The etiology of sporadic cavernous malformations is not well-understood. However, recent evidence suggests that they may arise from a developmental venous anomaly. The goal of this study was to evaluate the prevalence of developmental venous anomalies associated with sporadic cavernous malformations using 7T MR imaging.
View Article and Find Full Text PDFPurpose: The inflow-based vascular-space-occupancy (iVASO) MRI was originally developed in a single-slice mode to measure arterial cerebral blood volume (CBVa). When vascular crushers are applied in iVASO, the signals can be sensitized predominantly to small pial arteries and arterioles. The purpose of this study is to perform a systematic optimization and evaluation of a 3D iVASO sequence on both 3 T and 7 T for the quantification of CBVa values in the human brain.
View Article and Find Full Text PDFFunctional magnetic resonance imaging (fMRI) with blood oxygen level-dependent (BOLD) technique is useful for preoperative mapping of brain functional networks in tumor patients, providing reliable in vivo detection of eloquent cortex to help reduce the risk of postsurgical morbidity. BOLD task-based fMRI (tb-fMRI) is the most often used noninvasive method that can reliably map cortical networks, including those associated with sensorimotor, language, and visual functions. BOLD resting-state fMRI (rs-fMRI) is emerging as a promising ancillary tool for visualization of diverse functional networks.
View Article and Find Full Text PDFWe introduce tumor connectomics, a novel MRI-based complex graph theory framework that describes the intricate network of relationships within the tumor and surrounding tissue, and combine this with multiparametric radiomics (mpRad) in a machine-learning approach to distinguish radiation necrosis (RN) from true progression (TP). Pathologically confirmed cases of RN vs. TP in brain metastases treated with SRS were included from a single institution.
View Article and Find Full Text PDFBackground And Purpose: To determine the incidence of acute neuroimaging (NI) findings and comorbidities in the coronavirus disease of 2019 (COVID-19)-infected subjects in seven U.S. and four European hospitals.
View Article and Find Full Text PDFCerebrovascular disease is a leading cause of death globally. Prevention and early intervention are known to be the most effective forms of its management. Non-invasive imaging methods hold great promises for early stratification, but at present lack the sensitivity for personalized prognosis.
View Article and Find Full Text PDFAccumulating evidence from recent studies has indicated the importance of studying the interaction between the microvascular and lymphatic systems in the brain. To date, most imaging methods can only measure blood or lymphatic vessels separately, such as dynamic susceptibility contrast (DSC) MRI for blood vessels and DSC MRI-in-the-cerebrospinal fluid (CSF) (cDSC MRI) for lymphatic vessels. An approach that can measure both blood and lymphatic vessels in a single scan offers advantages such as a halved scan time and contrast dosage.
View Article and Find Full Text PDFThe medial temporal lobe (MTL) is a key area implicated in many brain diseases, such as Alzheimer's disease. As a functional biomarker, the oxygen extraction fraction (OEF) of MTL may be more sensitive than structural atrophy of MTL, especially at the early stages of diseases. However, there is a lack of non-invasive techniques to measure MTL-OEF in humans.
View Article and Find Full Text PDFCerebrovascular Reactivity (CVR) provides an assessment of the brain's vascular reserve and has been postulated to be a sensitive marker in cerebrovascular diseases. MRI-based CVR measurement typically employs alterations in arterial carbon dioxide (CO2) level while continuously acquiring Blood-Oxygenation-Level-Dependent (BOLD) images. CO2-inhalation and resting-state methods are two commonly used approaches for CVR MRI.
View Article and Find Full Text PDFWe present a deep neural network architecture that combines multi-scale spatial attention with temporal attention to simultaneously localize the language and motor areas of the eloquent cortex from dynamic functional connectivity data. Our multi-scale spatial attention operates on graph-based features extracted from the connectivity matrices, thus honing in on the inter-regional interactions that collectively define the eloquent cortex. At the same time, our temporal attention model selects the intervals during which these interactions are most pronounced.
View Article and Find Full Text PDFObjective: We assessed the utility of apparent diffusion coefficients (ADCs) derived from diffusion-weighted imaging to differentiate benign and malignant orbital tumours by oculoplastic surgeons in the clinical setting and sought to validate observed ADC cut-off values.
Design And Participants: Retrospective review of patients with benign or malignant biopsy-confirmed orbital tumours.
Methods: Blinded graders including 2 oculoplastic surgeons, 1 neuroradiologist, and 1 medical student located and measured orbital tumour ADCs (10 mm/s) using the Region of Interest tool.
The high-level relationships that form complex networks within tumors and between surrounding tissue is challenging and not fully understood. To better understand these tumoral networks, we developed a tumor connectomics framework (TCF) based on graph theory with machine learning to model the complex interactions within and around the tumor microenvironment that are detectable on imaging. The TCF characterization model was tested with independent datasets of breast, brain, and prostate lesions with corresponding validation datasets in breast and brain cancer.
View Article and Find Full Text PDFFunctional magnetic resonance imaging for presurgical brain mapping enables neurosurgeons to identify viable tissue near a site of operable pathology which might be at risk of surgery-induced damage. However, focal brain pathology (e.g.
View Article and Find Full Text PDFLocalizing the eloquent cortex is a crucial part of presurgical planning. While invasive mapping is the gold standard, there is increasing interest in using noninvasive fMRI to shorten and improve the process. However, many surgical patients cannot adequately perform task-based fMRI protocols.
View Article and Find Full Text PDFBackground Resting-state functional MRI (rs-fMRI) is a potential alternative to task-based functional MRI (tb-fMRI) for somatomotor network (SMN) identification. Brain networks can also be generated from tb-fMRI by using independent component analysis (ICA). Purpose To investigate whether the SMN can be identified by using ICA from a language task without a motor component, the sentence completion functional MRI (sc-fMRI) task, compared with rs-fMRI.
View Article and Find Full Text PDFObjective: Sarcopenia is an important prognostic consideration in surgical oncology that has received relatively little attention in brain tumor patients. Temporal muscle thickness (TMT) has recently been proposed as a novel radiographic marker of sarcopenia that can be efficiently obtained within existing workflows. We investigated the prognostic value of TMT in primary and progressive glioblastoma.
View Article and Find Full Text PDF