Background: Staphylococcus aureus is associated with a spectrum of symbiotic relationships with its human host from carriage to sepsis and is frequently associated with nosocomial and community-acquired infections, thus the differential gene content among strains is of interest.
Results: We sequenced three clinical strains and combined these data with 13 publically available human isolates and one bovine strain for comparative genomic analyses. All genomes were annotated using RAST, and then their gene similarities and differences were delineated.
Objectives: We sought to construct and partially characterize complementary DNA (cDNA) libraries prepared from the middle ear mucosa (MEM) of chinchillas to better understand pathogenic aspects of infection and inflammation, particularly with respect to leukotriene biogenesis and response.
Methods: Chinchilla MEM was harvested from controls and after middle ear inoculation with nontypeable Haemophilus influenzae. RNA was extracted to generate cDNA libraries.
Background: Streptococcus pneumoniae [Sp] infection is associated with local and systemic disease. Our current understanding of the differential contributions of genetic strain variation, serotype, and host response to disease phenotype is incomplete. Using the chinchilla model of otitis media [OM] we investigated the disease phenotype generated by the laboratory strain TIGR4 and each of thirteen clinical strains (BS68-75, BS290, BS291, BS293, BS436 and BS437); eleven of the thirteen strains have been genomically sequenced.
View Article and Find Full Text PDFThe distributed-genome hypothesis (DGH) states that pathogenic bacteria possess a supragenome that is much larger than the genome of any single bacterium and that these pathogens utilize genetic recombination and a large, noncore set of genes as a means of diversity generation. We sequenced the genomes of eight nasopharyngeal strains of Streptococcus pneumoniae isolated from pediatric patients with upper respiratory symptoms and performed quantitative genomic analyses among these and nine publicly available pneumococcal strains. Coding sequences from all strains were grouped into 3,170 orthologous gene clusters, of which 1,454 (46%) were conserved among all 17 strains.
View Article and Find Full Text PDFBackground: The nontypeable Haemophilus influenzae (NTHi) are associated with a spectrum of respiratory mucosal infections including: acute otitis media (AOM); chronic otitis media with effusion (COME); otorrhea; locally invasive diseases such as mastoiditis; as well as a range of systemic disease states, suggesting a wide range of virulence phenotypes. Genomic studies have demonstrated that each clinical strain contains a unique genic distribution from a population-based supragenome, the distributed genome hypothesis. These diverse clinical and genotypic findings suggest that each NTHi strain possesses a unique set of virulence factors that contributes to the course of the disease.
View Article and Find Full Text PDFBackground: The distributed genome hypothesis (DGH) posits that chronic bacterial pathogens utilize polyclonal infection and reassortment of genic characters to ensure persistence in the face of adaptive host defenses. Studies based on random sequencing of multiple strain libraries suggested that free-living bacterial species possess a supragenome that is much larger than the genome of any single bacterium.
Results: We derived high depth genomic coverage of nine nontypeable Haemophilus influenzae (NTHi) clinical isolates, bringing to 13 the number of sequenced NTHi genomes.
The distributed genome hypothesis (DGH) states that each strain within a bacterial species receives a unique distribution of genes from a population-based supragenome that is many times larger than the genome of any given strain. The observations that natural infecting populations are often polyclonal and that most chronic bacterial pathogens have highly developed mechanisms for horizontal gene transfer suggested the DGH and provided the means and the mechanisms to explain how chronic infections persist in the face of a mammalian host's adaptive defense mechanisms. Having previously established the validity of the DGH for obligate pathogens, we wished to evaluate its applicability to an opportunistic bacterial pathogen.
View Article and Find Full Text PDFObjective: To create, array, and characterize a pooled, high-coverage, genomic library composed of multiple biofilm-forming clinical strains of the opportunistic pathogen, Pseudomonas aeruginosa (PA). Twelve strains were obtained from patients with otorrhea, otitis media, and cystic fibrosis as a resource for investigating: difference in the transcriptomes of planktonic and biofilm envirovars; the size of the PA supragenome and determining the number of virulence genes available at the population level; and the distributed genome hypothesis.
Methods: High molecular weight genomic DNAs from 12 clinical PA strains were individually hydrodynamically sheared to produce mean fragment sizes of approximately 1.
Context: Chronic otitis media (OM) is a common pediatric infectious disease. Previous studies demonstrating that metabolically active bacteria exist in culture-negative pediatric middle-ear effusions and that experimental infection with Haemophilus influenzae in the chinchilla model of otitis media results in the formation of adherent mucosal biofilms suggest that chronic OM may result from a mucosal biofilm infection.
Objective: To test the hypothesis that chronic OM in humans is biofilm-related.
Eight low-passage-number Streptococcus pneumoniae clinical isolates, each of a different serotype and a different multilocus sequence type, were obtained from pediatric participants in a pneumococcal vaccine trial. Comparative genomic analyses were performed with these strains and two S. pneumoniae reference strains.
View Article and Find Full Text PDFBackground: An increased awareness of bacterial biofilms and their formation has led to a better understanding of bacterial infections that occur in the middle ear. Perhaps the best studied pathogen for its propensity toward biofilm formation is Pseudomonas aeruginosa, also the primary pathogen in chronic suppurative otitis media (CSOM).
Objective: The aim of this study was to determine whether P.
We hypothesize that Haemophilus influenzae, as a species, possesses a much greater number of genes than that found in any single H. influenzae genome. This supragenome is distributed throughout naturally occurring infectious populations, and new strains arise through autocompetence and autotransformation systems.
View Article and Find Full Text PDFUnlabelled: Haemophilus influenzae is one of the most important respiratory pathogens of man. It has been etiologically associated with otitis media, otorrhea, and chronic obstructive pulmonary disease. Identification of new genomic elements will provide novel targets to fight chronic infections caused by this organism.
View Article and Find Full Text PDFContext: Chronic otitis media with effusion (OME) has long been considered to be a sterile inflammatory process. The previous application of molecular diagnostic technologies to OME suggests that viable bacteria are present in complex communities known as mucosal biofilms; however, direct imaging evidence of mucosal biofilms associated with OM is lacking.
Objective: To determine whether biofilm formation occurs in middle-ear mucosa in an experimental model of otitis media.