The International Agency for Research on Cancer (IARC) has recently proposed employing "ten key characteristics of human carcinogens" (TKCs) to determine the potential of agents for harmful effects. The TKCs seem likely to confuse the unsatisfactory correlation from testing regimes that have ignored the differences evident when cellular changes are compared in short and long-lived species, with their very different stem cell and somatic cell phylogenies. The proposed characteristics are so broad that their use will lead to an increase in the current unacceptably high rate of false positives.
View Article and Find Full Text PDFA hallmark of aging is the progressive accumulation of cellular damage. Age-induced damage arises due to a decrease in organelle function along with a decline in protein quality control. Although somatic tissues deteriorate with age, the germline must maintain cellular homeostasis in order to ensure the production of healthy progeny.
View Article and Find Full Text PDFProduction of healthy gametes in meiosis relies on the quality control and proper distribution of both nuclear and cytoplasmic contents. Meiotic differentiation naturally eliminates age-induced cellular damage by an unknown mechanism. Using time-lapse fluorescence microscopy in budding yeast, we found that nuclear senescence factors - including protein aggregates, extrachromosomal ribosomal DNA circles, and abnormal nucleolar material - are sequestered away from chromosomes during meiosis II and subsequently eliminated.
View Article and Find Full Text PDFIt is time to say goodbye to the standard two-year rodent bioassay. While a few, primarily genotoxic, compounds which are clearly associated with human cancer test positive in the bioassay, there is no science-based, sound foundation for presuming it provides either a valid broad (across different chemicals) capability for discerning potential human carcinogens or a valid starting point for making human risk assessment decisions. The two basic assumptions underlying the bioassay are: (1) rodent carcinogens are human carcinogens; and (2) results obtained at high doses are indicative of results that will occur at lower, environmentally relevant, doses.
View Article and Find Full Text PDFSeveral recent and prominent articles in Science and Nature deliberately mischaracterized the nature of genuine scientific evidence. Those articles take issue with the United States Environmental Protection Agency's recent proposal to structure its policies and rules only from studies with transparently published raw data. The articles claim it is an effort to obfuscate with transparency, by eliminating a host of studies not offering raw data.
View Article and Find Full Text PDFThe Toxicology Forum sponsored a workshop in October 2016, on the human relevance of rodent liver tumors occurring via nongenotoxic modes of action (MOAs). The workshop focused on two nuclear receptor-mediated MOAs (Constitutive Androstane Receptor (CAR) and Peroxisome Proliferator Activated Receptor-alpha (PPARα), and on cytotoxicity. The goal of the meeting was to review the state of the science to (1) identify areas of consensus and differences, data gaps and research needs; (2) identify reasons for inconsistencies in current regulatory positions; and (3) consider what data are needed to demonstrate a specific MOA, and when additional research is needed to rule out alternative possibilities.
View Article and Find Full Text PDFThe threshold of toxicological concern (TTC) approach is a resource-effective de minimis method for the safety assessment of chemicals, based on distributional analysis of the results of a large number of toxicological studies. It is being increasingly used to screen and prioritize substances with low exposure for which there is little or no toxicological information. The first step in the approach is the identification of substances that may be DNA-reactive mutagens, to which the lowest TTC value is applied.
View Article and Find Full Text PDFCurr Opin Toxicol
April 2017
The rapidly evolving field of epigenetic regulation of gene expression is having an impact across the spectrum of biomedical research. Toxicologists have embraced this area as evidenced by their increasing focus on discerning potential epigenetic mechanisms underlying mechanisms by which chemical and physical agents might cause toxicity. It is not surprising that an interest in epigenetic mechanisms of toxicity would lead to a desire to incorporate an epigenetic component into safety assessment.
View Article and Find Full Text PDFHistone chaperones are proteins that interact with histones to regulate the thermodynamic process of nucleosome assembly. sNASP and ASF1 are conserved histone chaperones that interact with histones H3 and H4 and are found in a multi-chaperoning complex in vivo Previously we identified a short peptide motif within H3 that binds to the TPR domain of sNASP with nanomolar affinity. Interestingly, this peptide motif is sequestered within the known ASF1-H3-H4 interface, raising the question of how these two proteins are found in complex together with histones when they share the same binding site.
View Article and Find Full Text PDFA public appeal has been advanced by a large group of scientists, concerned that science has been misused in attempting to quantify and regulate unmeasurable hazards and risks. The appeal recalls that science is unable to evaluate hazards that cannot be measured, and that science in such cases should not be invoked to justify risk assessments in health, safety and environmental regulations. The appeal also notes that most national and international statutes delineating the discretion of regulators are ambiguous about what rules of evidence ought to apply.
View Article and Find Full Text PDFThe HESI-led RISK21 effort has developed a framework supporting the use of twenty-first century technology in obtaining and using information for chemical risk assessment. This framework represents a problem formulation-based, exposure-driven, tiered data acquisition approach that leads to an informed decision on human health safety to be made when sufficient evidence is available. It provides a transparent and consistent approach to evaluate information in order to maximize the ability of assessments to inform decisions and to optimize the use of resources.
View Article and Find Full Text PDFMol Cell Proteomics
October 2015
Antibodies are key reagents in biology and medicine, but commercial sources are rarely recombinant and thus do not provide a permanent and renewable resource. Here, we describe an industrialized platform to generate antigens and validated recombinant antibodies for 346 transcription factors (TFs) and 211 epigenetic antigens. We describe an optimized automated phage display and antigen expression pipeline that in aggregate produced about 3000 sequenced Fragment antigen-binding domain that had high affinity (typically EC50<20 nm), high stability (Tm∼80 °C), good expression in E.
View Article and Find Full Text PDFSharks possess a variety of pathogenic bacteria in their oral cavity that may potentially be transferred into humans during a bite. The aim of the presented study focused on the identification of the bacteria present in the mouths of live blacktip sharks, Carcharhinus limbatus, and the extent that these bacteria possess multi-drug resistance. Swabs were taken from the oral cavity of nineteen live blacktip sharks, which were subsequently released.
View Article and Find Full Text PDFToxicogenomics (TGx) is employed frequently to investigate underlying molecular mechanisms of the compound of interest and, thus, has become an aid to mode of action determination. However, the results and interpretation of a TGx dataset are influenced by the experimental design and methods of analysis employed. This article describes an evaluation and reanalysis, by two independent laboratories, of previously published TGx mouse liver microarray data for a triazole fungicide, propiconazole (PPZ), and the anticonvulsant drug phenobarbital (PB).
View Article and Find Full Text PDFGene regulatory interactions underlying the early stages of non-genotoxic carcinogenesis are poorly understood. Here, we have identified key candidate regulators of phenobarbital (PB)-mediated mouse liver tumorigenesis, a well-characterized model of non-genotoxic carcinogenesis, by applying a new computational modeling approach to a comprehensive collection of in vivo gene expression studies. We have combined our previously developed motif activity response analysis (MARA), which models gene expression patterns in terms of computationally predicted transcription factor binding sites with singular value decomposition (SVD) of the inferred motif activities, to disentangle the roles that different transcriptional regulators play in specific biological pathways of tumor promotion.
View Article and Find Full Text PDFThe constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are important nuclear receptors involved in the regulation of cellular responses from exposure to many xenobiotics and various physiological processes. Phenobarbital (PB) is a non-genotoxic indirect CAR activator, which induces cytochrome P450 (CYP) and other xenobiotic metabolizing enzymes and is known to produce liver foci/tumors in mice and rats. From literature data, a mode of action (MOA) for PB-induced rodent liver tumor formation was developed.
View Article and Find Full Text PDFThe molecular events during nongenotoxic carcinogenesis and their temporal order are poorly understood but thought to include long-lasting perturbations of gene expression. Here, we have investigated the temporal sequence of molecular and pathological perturbations at early stages of phenobarbital (PB) mediated liver tumor promotion in vivo. Molecular profiling (mRNA, microRNA [miRNA], DNA methylation, and proteins) of mouse liver during 13 weeks of PB treatment revealed progressive increases in hepatic expression of long noncoding RNAs and miRNAs originating from the Dlk1-Dio3 imprinted gene cluster, a locus that has recently been associated with stem cell pluripotency in mice and various neoplasms in humans.
View Article and Find Full Text PDFPropiconazole (PPZ) is a conazole fungicide that is not mutagenic, clastogenic, or DNA damaging in standard in vitro and in vivo genetic toxicity tests for gene mutations, chromosome aberrations, DNA damage, and cell transformation. However, it was demonstrated to be a male mouse liver carcinogen when administered in food for 24 months only at a concentration of 2,500 ppm that exceeded the maximum tolerated dose based on increased mortality, decreased body weight gain, and the presence of liver necrosis. PPZ was subsequently tested for mutagenicity in the Big Blue® transgenic mouse assay at the 2,500 ppm dose, and the result was reported as positive by Ross et al.
View Article and Find Full Text PDFQuantitative methods for estimation of cancer risk have been developed for daily, lifetime human exposures. There are a variety of studies or methodologies available to address less-than-lifetime exposures. However, a common framework for evaluating risk from less-than-lifetime exposures (including short-term and/or intermittent exposures) does not exist, which could result in inconsistencies in risk assessment practice.
View Article and Find Full Text PDFPlacenta percreta is a complication of pregnancy with significant morbidity and mortality rates. Conservative management may be considered when fertility preservation is desired or to possibly reduce morbidity when there is invasion of pelvic structures. We present 3 cases of antenatally diagnosed placenta percreta that were managed conservatively.
View Article and Find Full Text PDF