Publications by authors named "Jay Duffner"

Background And Objectives: Nipocalimab is a high-affinity, fully human, effectorless immunoglobulin G1 monoclonal antibody targeting the neonatal Fc receptor and is currently under evaluation for the treatment of rare and prevalent immunoglobulin G autoantibody-mediated and alloantibody-mediated diseases. This phase I, randomized, double-blind, placebo-controlled, single-dose escalation study in healthy Japanese volunteers (N = 24) assessed the safety, pharmacokinetics, and effect on the serum immunoglobulin G level of single doses of nipocalimab.

Methods: Volunteers were grouped into three cohorts and received intravenous nipocalimab at 10, 30, or 60 mg/kg or placebo.

View Article and Find Full Text PDF
Article Synopsis
  • G3BP1 and G3BP2 are proteins that help form stress granules in cells during stress, like viral infections, but SARS-CoV-2's nucleocapsid (N) protein stops this process.
  • The study identifies a specific mutation (N-F17A) in the N protein that prevents its interaction with G3BP1/2, leading to an inability to inhibit stress granule formation.
  • This disruption results in lower viral replication and reduced illness in experimental models, showing that the G3BP1-N interaction is crucial for SARS-CoV-2’s ability to replicate and cause disease.
View Article and Find Full Text PDF

Stress granule formation is triggered by the release of mRNAs from polysomes and is promoted by the action of the RNA-binding proteins G3BP1/2. Stress granules have been implicated in several disease states, including cancer and neurodegeneration. Consequently, compounds that limit stress granule formation or promote their dissolution have potential as both experimental tools and novel therapeutics.

View Article and Find Full Text PDF

Stress granule formation is triggered by the release of mRNAs from polysomes and is promoted by the action of the paralogs G3BP1 and G3BP2. G3BP1/2 proteins bind mRNAs and thereby promote the condensation of mRNPs into stress granules. Stress granules have been implicated in several disease states, including cancer and neurodegeneration.

View Article and Find Full Text PDF
Article Synopsis
  • G3BP1 and G3BP2 are proteins that help form stress granules when cells face stress, like during a virus attack.
  • The study investigates how G3BP1 interacts with the nucleocapsid (N) protein of SARS-CoV-2 and what happens when this interaction is disrupted.
  • A mutation in the N protein (F17) impairs its ability to interact with G3BP1, leading to reduced viral replication and disease severity, implying that this interaction helps the virus evade the cellular stress response.
View Article and Find Full Text PDF

Background: The goal of this study is to use comprehensive molecular profiling to characterize clinical response to anti-TNF therapy in a real-world setting and identify reproducible markers differentiating good responders and non-responders in rheumatoid arthritis (RA).

Methods: Whole-blood mRNA, plasma proteins, and glycopeptides were measured in two cohorts of biologic-naïve RA patients (n = 40 and n = 36) from the Corrona CERTAIN (Comparative Effectiveness Registry to study Therapies for Arthritis and Inflammatory coNditions) registry at baseline and after 3 months of anti-TNF treatment. Response to treatment was categorized by EULAR criteria.

View Article and Find Full Text PDF

Background: The sequelae of Kawasaki disease (KD) vary widely with the greatest risk for future cardiovascular events among those who develop giant coronary artery aneurysms (CAA). We sought to define the molecular signature associated with different outcomes in pediatric and adult KD patients.

Methods: Molecular profiling was conducted using mass spectrometry-based shotgun proteomics, transcriptomics, and glycomics methods on 8 pediatric KD patients at the acute, subacute, and convalescent time points.

View Article and Find Full Text PDF

The importance of IgG glycosylation, Fc-gamma receptor (FcγR) single nucleotide polymorphisms and FcγR copy number variations in fine tuning the immune response has been well established. There is a growing appreciation of the importance of glycosylation of FcγRs in modulating the FcγR-IgG interaction based on the association between the glycosylation of recombinant FcγRs and the kinetics and affinity of the FcγR-IgG interaction. Although glycosylation of recombinant FcγRs has been recently characterized, limited knowledge exists on the glycosylation of endogenous human FcγRs.

View Article and Find Full Text PDF

M281 is a fully human, anti-neonatal Fc receptor (FcRn) antibody that inhibits FcRn-mediated immunoglobulin G (IgG) recycling to decrease pathogenic IgG while preserving IgG production. A randomized, double-blind, placebo-controlled, first-in-human study with 50 normal healthy volunteers was designed to probe safety and the physiological maximum for reduction of IgG. Intravenous infusion of single ascending doses up to 60 mg/kg induced dose-dependent serum IgG reductions, which were similar across all IgG subclasses.

View Article and Find Full Text PDF

Background: In April 2015, the US Food and Drug Administration approved the first generic glatiramer acetate, Glatopa® (M356), as fully substitutable for Copaxone® 20 mg/mL for relapsing forms of multiple sclerosis (MS). This approval was accomplished through an Abbreviated New Drug Application that demonstrated equivalence to Copaxone.

Method: This article will provide an overview of the methods used to establish the biological and immunological equivalence of the two glatiramer acetate products, including methods evaluating antigenpresenting cell (APC) biology, T-cell biology, and other immunomodulatory effects.

View Article and Find Full Text PDF

Adjuvanted vaccines afford invaluable protection against disease, and the molecular and cellular changes they induce offer direct insight into human immunobiology. Here we show that within 24 h of receiving adjuvanted swine flu vaccine, healthy individuals made expansive, complex molecular and cellular responses that included overt lymphoid as well as myeloid contributions. Unexpectedly, this early response was subtly but significantly different in people older than ∼35 years.

View Article and Find Full Text PDF

Glatopa™ is a generic glatiramer acetate recently approved for the treatment of patients with relapsing forms of multiple sclerosis. Gene expression profiling was performed as a means to evaluate equivalence of Glatopa and Copaxone®. Microarray analysis containing 39,429 unique probes across the entire genome was performed in murine glatiramer acetate--responsive Th2-polarized T cells, a test system highly relevant to the biology of glatiramer acetate.

View Article and Find Full Text PDF

To date, the structure-activity relationship studies of heparin/heparan sulfate with their diverse binding partners such as growth factors, cytokines, chemokines, and extracellular matrix proteins have been limited yet provide early insight that specific sequences contribute to this manifold biological role. This has led to an impetus for the chemical synthesis of oligosaccharide fragments of these complex polysaccharides, which can provide an effective tool for this goal. The synthesis of three heparin mimetic hexasaccharides with distinct structural patterns is described herein, and the influence of the targeted substitution on their bioactivity profiles is studied using in vitro affinity and/or inhibition toward different growth factors and proteins.

View Article and Find Full Text PDF

The binding affinity and specificity of heparin to proteins is widely recognized to be sulfation-pattern dependent. However, for the majority of heparin-binding proteins (HBPs), it still remains unclear what moieties are involved in the specific binding interaction. Here, we report our study using saturation transfer difference (STD) nuclear magnetic resonance (NMR) to map out the interactions of synthetic heparin oligosaccharides with HBPs, such as basic fibroblast growth factor (FGF2) and fibroblast growth factor 10 (FGF10), to provide insight into the critical epitopes of heparin ligands involved.

View Article and Find Full Text PDF

Heparan sulfate proteoglycans (HSPGs) play a key role in shaping the tumor microenvironment by presenting growth factors, cytokines, and other soluble factors that are critical for host cell recruitment and activation, as well as promoting tumor progression, metastasis, and survival. M402 is a rationally engineered, non-cytotoxic heparan sulfate (HS) mimetic, designed to inhibit multiple factors implicated in tumor-host cell interactions, including VEGF, FGF2, SDF-1α, P-selectin, and heparanase. A single s.

View Article and Find Full Text PDF

A series of size-defined low-molecular-weight heparins were generated by regioselective chemical modifications and profiled for their in vitro and in vivo activities. The compounds displayed reduced anti-coagulant activity, demonstrated varying affinities toward angiogenic growth factors (fibroblast growth factor-2, vascular endothelial growth factor and stromal cell-derived factor-1α), inhibited the P-selectin/P-selectin glycoprotein ligand-1 interaction and, notably, exhibited anti-tumor efficacy in a murine melanoma experimental metastasis model. Our results demonstrate that modulating specific sequences, especially the N-domains (-NS or -NH(2) or -NHCOCH(3)) in these polysaccharide sequences, has a major impact on the participation in a diverse range of biological activities.

View Article and Find Full Text PDF

Nanoparticles bearing surface-conjugated targeting ligands are increasingly being explored for a variety of biomedical applications. The multivalent conjugation of targeting ligands on the surface of nanoparticles is presumed to enhance binding to the desired target. However, given the complexities inherent in the interactions of nanoparticle surfaces with proteins, and the structural diversity of nanoparticle scaffolds and targeting ligands, our understanding of how conjugation of targeting ligands affects nanoparticle binding remains incomplete.

View Article and Find Full Text PDF

Phosphorylation of neurotransmitter receptors can modify their activity and regulate neuronal excitability. Cyclin-dependent kinase 5 (cdk5) is a proline-directed serine/threonine kinase involved not only in neuronal development, but also in synaptic function and plasticity. Here we demonstrate that group I metabotropic glutamate receptors (mGluRs), which modulate post-synaptic signaling by coupling to intracellular signal transduction pathways, are phosphorylated by cdk5.

View Article and Find Full Text PDF

Small-molecule inhibition of extracellular proteins that activate membrane receptors has proven to be extremely challenging. Diversity-oriented synthesis and small-molecule microarrays enabled the discovery of robotnikinin, a small molecule that binds the extracellular Sonic hedgehog (Shh) protein and blocks Shh signaling in cell lines, human primary keratinocytes and a synthetic model of human skin. Shh pathway activity is rescued by small-molecule agonists of Smoothened, which functions immediately downstream of the Shh receptor Patched.

View Article and Find Full Text PDF

To explore the variability in biosensor studies, 150 participants from 20 countries were given the same protein samples and asked to determine kinetic rate constants for the interaction. We chose a protein system that was amenable to analysis using different biosensor platforms as well as by users of different expertise levels. The two proteins (a 50-kDa Fab and a 60-kDa glutathione S-transferase [GST] antigen) form a relatively high-affinity complex, so participants needed to optimize several experimental parameters, including ligand immobilization and regeneration conditions as well as analyte concentrations and injection/dissociation times.

View Article and Find Full Text PDF

Scavenger receptor, class B, type I (SR-BI), controls high-density lipoprotein (HDL) metabolism by mediating cellular selective uptake of lipids from HDL without the concomitant degradation of the lipoprotein particle. We previously identified in a high-throughput chemical screen of intact cells five compounds (BLT-1-5) that inhibit SR-BI-dependent lipid transport from HDL, but do not block HDL binding to SR-BI on the cell surface. Although these BLTs are widely used to examine the diverse functions of SR-BI, their direct target(s), SR-BI itself or some other component of the SR-BI pathway, has not been identified.

View Article and Find Full Text PDF

Treatment of atherosclerotic disease often focuses on reducing plasma LDL-cholesterol or increasing plasma HDL-cholesterol. We examined in vitro the effects on HDL receptor [scavenger receptor class B type I (SR-BI)] activity of three classes of clinical and experimental plasma HDL-cholesterol-elevating compounds: niacin, fibrates, and HDL376. Fenofibrate (FF) and HDL376 were potent (IC(50) approximately 1 microM), direct inhibitors of SR-BI-mediated lipid transport in cells and in liposomes reconstituted with purified SR-BI.

View Article and Find Full Text PDF

An epoxide derived from (-)-shikimic acid was attached to a solid support and used to synthesize over 5000 diverse small molecules. Key transformations include a Lewis acid-catalyzed epoxide opening with amines and an intramolecular Heck reaction with aryl iodides. Compounds derived from this pathway were printed onto small-molecule microarrays and screened for binding to proteins.

View Article and Find Full Text PDF

Uncovering the functions of thousands of gene products, in various states of post-translational modification, is a key challenge in the post-genome era. To identify small-molecule probes for each protein function, high-throughput methods for ligand discovery are needed. In recent years, small-molecule microarrays (SMMs) have emerged as high-throughput and miniaturized screening tools for discovering protein-small-molecule interactions.

View Article and Find Full Text PDF