Waves of spontaneous electrical activity propagate across many regions of the central nervous system during specific stages of early development. The patterns of wave propagation are critical in the activation of many activity-dependent developmental programs. It is not known how the mechanisms that initiate and propagate spontaneous waves operate during periods in which major changes in neuronal structure and function are taking place.
View Article and Find Full Text PDFSpontaneous waves of activity that propagate across large structures during specific developmental stages play central roles in CNS development. To understand the genesis and functions of these waves, it is critical to understand the spatial and temporal patterns of their propagation. We recently reported that spontaneous waves in the neonatal cerebral cortex originate from a ventrolateral pacemaker region.
View Article and Find Full Text PDFalpha-Dystrobrevin associates with and is a homologue of dystrophin, the protein linked to Duchenne and Becker muscular dystrophies. We used a transgenic approach to restore alpha-dystrobrevin to the sarcolemma in mice that lack dystrophin (mdx mice) to study two interrelated functions: (1) the ability of alpha-dystrobrevin to rescue components of the dystrophin complex in the absence of dystrophin and (2) the ability of sarcolemmal alpha-dystrobrevin to ameliorate the dystrophic phenotype. We generated transgenic mice expressing alpha-dystrobrevin-2a linked to a palmitoylation signal sequence and bred them onto the alpha-dystrobrevin-null and mdx backgrounds.
View Article and Find Full Text PDF