Divalent metal transporter 1 (DMT1) cotransports ferrous iron and protons and is the primary mechanism for uptake of nonheme iron by enterocytes. Inhibitors are potentially useful as therapeutic agents to treat iron overload disorders such as hereditary hemochromatosis or -thalassemia intermedia, provided that inhibition can be restricted to the duodenum. We used a calcein quench assay to identify human DMT1 inhibitors.
View Article and Find Full Text PDFInhibition of intestinal brush border DMT1 offers a novel therapeutic approach to the prevention and treatment of disorders of iron overload. Several series of diaryl and tricyclic benzylisothiourea compounds as novel and potent DMT1 inhibitors were discovered from the original hit compound 1. These compounds demonstrated in vitro potency against DMT1, desirable cell permeability properties and a dose-dependent inhibition of iron uptake in an acute rat model of iron hyperabsorption.
View Article and Find Full Text PDFThree distinct series of substituted pyrazole blockers of divalent metal transporter 1 (DMT1) were elaborated from the high-throughput screening pyrazolone hit 1. Preliminary hit-to-lead efforts revealed a preference for electron-withdrawing substituents in the 4-amido-5-hydroxypyrazole series 6a-l. In turn, this preference was more pronounced in a series of 4-aryl-5-hydroxypyrazoles 8a-j.
View Article and Find Full Text PDFStarting from the oxindole 2a identified through a high-throughput screening campaign, a series of Na(V)1.7 blockers were developed. Following the elimination of undesirable structural features, preliminary optimization of the oxindole C-3 and N-1 substituents afforded the simplified analogue 9b, which demonstrated a 10-fold increase in target potency versus the original HTS hit.
View Article and Find Full Text PDF[reaction: see text] A remarkable phenylboronic acid mediated triple condensation reaction of phloroglucinol (1,3,5-trihydroxybenzene) with a series of alpha,beta-unsaturated carbonyl compounds is reported. This experimentally simple reaction afforded novel C3-symmetric 2H-chromene derivatives. These derivatives represent structural analogues of the natural product xyloketal A, which has been reported to be a potent inhibitor of acetylcholine esterase.
View Article and Find Full Text PDF[reaction: see text] A versatile route to prepare centro-substituted triquinacene derivatives (1, R = various substituents), as exemplified by the preparation of 10-phenyltriquinacene (1, R = Ph), is reported. The quaternary, centro substituent (C-10) was installed by a trimethylsilyl chloride-promoted conjugate addition reaction of an organocuprate, derived from phenylmagnesium bromide, and the protected bicyclic enone (11). The resultant trimethylsilyl enol ether was then converted regioselectively to the C-2-allylated conjugate addition products (13, R = Ph).
View Article and Find Full Text PDF