Publications by authors named "Jawid Fatih"

Background: MECP2 Duplication Syndrome, also known as X-linked intellectual developmental disorder Lubs type (MRXSL; MIM: 300260), is a neurodevelopmental disorder caused by copy number gains spanning MECP2. Despite varying genomic rearrangement structures, including duplications and triplications, and a wide range of duplication sizes, no clear correlation exists between DNA rearrangement and clinical features. We had previously demonstrated that up to 38% of MRXSL families are characterized by complex genomic rearrangements (CGRs) of intermediate complexity (2 ≤ copy number variant breakpoints < 5), yet the impact of these genomic structures on regulation of gene expression and phenotypic manifestations have not been investigated.

View Article and Find Full Text PDF
Article Synopsis
  • - WDR83OS encodes a protein called Asterix, which works with another protein, CCDC47, to help fold large proteins correctly, specifically those with transmembrane domains.
  • - Recent findings linked mutations in CCDC47 and WDR83OS to trichohepatoneurodevelopmental syndrome, showing consistent symptoms like neurodevelopmental disorders, facial dysmorphism, and liver dysfunction across multiple families.
  • - A zebrafish model lacking Wdr83os function demonstrated its crucial role in the nervous system and lipid absorption, further establishing a connection between WDR83OS mutations and neurological diseases characterized by elevated bile acids.
View Article and Find Full Text PDF
Article Synopsis
  • FLVCR1 is a protein involved in transporting essential compounds like heme and choline, with mutations linked to serious developmental disorders and neurodegenerative conditions in humans.
  • Researchers identified 30 patients with biallelic FLVCR1 variants who displayed severe developmental issues, including brain malformations and other complications, paralleling symptoms seen in mouse models and conditions like Diamond-Blackfan anemia (DBA).
  • The findings emphasize that FLVCR1 variants could cause a wide range of health problems, underscoring the need for diverse genetic testing and consideration of animal model data in understanding human genetic disorders.
View Article and Find Full Text PDF
Article Synopsis
  • Despite research, many neurodevelopmental disorders remain unexplained; our study focuses on a female patient with specific genetic anomalies and brain abnormalities.
  • Genomic analysis revealed a complex chromosomal rearrangement involving chromosomes 5, 18, and additional material from chromosome 2.
  • The findings highlight the importance of using various genomic technologies to explore complex genetic disorders and improve understanding of their mechanisms.
View Article and Find Full Text PDF

The duplication-triplication/inverted-duplication (DUP-TRP/INV-DUP) structure is a complex genomic rearrangement (CGR). Although it has been identified as an important pathogenic DNA mutation signature in genomic disorders and cancer genomes, its architecture remains unresolved. Here, we studied the genomic architecture of DUP-TRP/INV-DUP by investigating the DNA of 24 patients identified by array comparative genomic hybridization (aCGH) on whom we found evidence for the existence of 4 out of 4 predicted structural variant (SV) haplotypes.

View Article and Find Full Text PDF

Background: NODAL signaling plays a critical role in embryonic patterning and heart development in vertebrates. Genetic variants resulting in perturbations of the TGF-β/NODAL signaling pathway have reproducibly been shown to cause laterality defects in humans. To further explore this association and improve genetic diagnosis, the study aims to identify and characterize a broader range of NODAL variants in a large number of individuals with laterality defects.

View Article and Find Full Text PDF
Article Synopsis
  • This study examined a female patient with a neurodevelopmental disorder (NDD) and identified complex genetic alterations including a terminal loss on chromosome 5 and a gain on chromosome 18, despite her parents having normal genetic copies of these chromosomes.
  • The researchers discovered an unbalanced translocation between chromosomes 5 and 18, with additional genetic material from chromosome 2, indicating a complex chromosomal rearrangement (CCR).
  • The findings highlight the necessity of using different genomic technologies to investigate the genetic basis of complicated NDD cases and enhance understanding of genetic disorders.
View Article and Find Full Text PDF

encodes Feline leukemia virus subgroup C receptor 1 (FLVCR1), a solute carrier (SLC) transporter within the Major Facilitator Superfamily. FLVCR1 is a widely expressed transmembrane protein with plasma membrane and mitochondrial isoforms implicated in heme, choline, and ethanolamine transport. While knockout mice die with skeletal malformations and defective erythropoiesis reminiscent of Diamond-Blackfan anemia, rare biallelic pathogenic variants are linked to childhood or adult-onset neurodegeneration of the retina, spinal cord, and peripheral nervous system.

View Article and Find Full Text PDF

Homozygous duplications contribute to genetic disease by altering gene dosage or disrupting gene regulation and can be more deleterious to organismal biology than heterozygous duplications. Intragenic exonic duplications can result in loss-of-function (LoF) or gain-of-function (GoF) alleles that when homozygosed, i.e.

View Article and Find Full Text PDF

Background: The duplication-triplication/inverted-duplication (DUP-TRP/INV-DUP) structure is a type of complex genomic rearrangement (CGR) hypothesized to result from replicative repair of DNA due to replication fork collapse. It is often mediated by a pair of inverted low-copy repeats (LCR) followed by iterative template switches resulting in at least two breakpoint junctions . Although it has been identified as an important mutation signature of pathogenicity for genomic disorders and cancer genomes, its architecture remains unresolved and is predicted to display at least four structural variation (SV) haplotypes.

View Article and Find Full Text PDF

Biallelic variants in genes for seven out of eight subunits of the conserved oligomeric Golgi complex (COG) are known to cause recessive congenital disorders of glycosylation (CDG) with variable clinical manifestations. COG3 encodes a constituent subunit of the COG complex that has not been associated with disease traits in humans. Herein, we report two COG3 homozygous missense variants in four individuals from two unrelated consanguineous families that co-segregated with COG3-CDG presentations.

View Article and Find Full Text PDF
Article Synopsis
  • DExD/H-box RNA helicases (DDX/DHX) are a large gene family linked to neurodevelopmental disorders and cancer, with DHX9 being a key member associated with various phenotypes.
  • Analysis of individuals with rare DHX9 variants revealed a range of neurodevelopmental disorder traits and the genetic basis for these phenotypes correlated with the type of variant.
  • Experimental investigations showed that DHX9 variants impact its cellular localization and function, linking them to conditions like Charcot-Marie-Tooth disease and highlighting DHX9's role in neurodevelopment and neuronal stability.
View Article and Find Full Text PDF

Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is characterized by aplasia of the female reproductive tract; the syndrome can include renal anomalies, absence or dysgenesis, and skeletal anomalies. While functional models have elucidated several candidate genes, only (MIM: 603490) variants have been definitively associated with a subtype of MRKH with hyperandrogenism (MIM: 158330). DNA from 148 clinically diagnosed MRKH probands across 144 unrelated families and available family members from North America, Europe, and South America were exome sequenced (ES) and by family-based genomics analyzed for rare likely deleterious variants.

View Article and Find Full Text PDF

Protein phosphatase 1 regulatory subunit 35 (PPP1R35) encodes a centrosomal protein required for recruiting microtubule-binding elongation machinery. Several proteins in this centriole biogenesis pathway correspond to established primary microcephaly (MCPH) genes, and multiple model organism studies hypothesize PPP1R35 as a candidate MCPH gene. Here, using exome sequencing (ES) and family-based rare variant analyses, we report a homozygous, frameshifting indel deleting the canonical stop codon in the last exon of PPP1R35 [Chr7: c.

View Article and Find Full Text PDF

An Xq22.2 region upstream of PLP1 has been proposed to underly a neurological disease trait when deleted in 46,XX females. Deletion mapping revealed that heterozygous deletions encompassing the smallest region of overlap (SRO) spanning six Xq22.

View Article and Find Full Text PDF

Background: The multiple de novo copy number variant (MdnCNV) phenotype is described by having four or more constitutional de novo CNVs (dnCNVs) arising independently throughout the human genome within one generation. It is a rare peri-zygotic mutational event, previously reported to be seen once in every 12,000 individuals referred for genome-wide chromosomal microarray analysis due to congenital abnormalities. These rare families provide a unique opportunity to understand the genetic factors of peri-zygotic genome instability and the impact of dnCNV on human diseases.

View Article and Find Full Text PDF

Genetic heterogeneity, reduced penetrance, and variable expressivity, the latter including asymmetric body axis plane presentations, have all been described in families with congenital limb malformations (CLMs). Interfamilial and intrafamilial heterogeneity highlight the complexity of the underlying genetic pathogenesis of these developmental anomalies. Family-based genomics by exome sequencing (ES) and rare variant analyses combined with whole-genome array-based comparative genomic hybridization were implemented to investigate 18 families with limb birth defects.

View Article and Find Full Text PDF

The leucine-rich glioma-inactivated (LGI) family consists of four highly conserved paralogous genes, LGI1-4, that are highly expressed in mammalian central and/or peripheral nervous systems. LGI1 antibodies are detected in subjects with autoimmune limbic encephalitis and peripheral nerve hyperexcitability syndromes (PNHSs) such as Isaacs and Morvan syndromes. Pathogenic variations of LGI1 and LGI4 are associated with neurological disorders as disease traits including familial temporal lobe epilepsy and neurogenic arthrogryposis multiplex congenita 1 with myelin defects, respectively.

View Article and Find Full Text PDF

Objective: Human genomics established that pathogenic variation in diverse genes can underlie a single disorder. For example, hereditary spastic paraplegia is associated with >80 genes, with frequently only few affected individuals described for each gene. Herein, we characterize a large cohort of individuals with biallelic variation in ENTPD1, a gene previously linked to spastic paraplegia 64 (Mendelian Inheritance in Man # 615683).

View Article and Find Full Text PDF

Hereditary sensory and autonomic neuropathy type 2B (HSAN2B) is a rare autosomal recessive peripheral neuropathy caused by biallelic variants in RETREG1 (formerly FAM134B). HSAN2B is characterized by sensory impairment resulting in skin ulcerations, amputations, and osteomyelitis as well as variable weakness, spasticity, and autonomic dysfunction. Here, we report four affected individuals with recurrent osteomyelitis, ulceration, and amputation of hands and feet, sensory neuropathy, hyperhidrosis, urinary incontinence, and renal failure from a family without any known shared parental ancestry.

View Article and Find Full Text PDF

Background: The endoplasmic reticulum (ER)-membrane protein complex (EMC) is a multi-protein transmembrane complex composed of 10 subunits that functions as a membrane-protein chaperone. Variants in EMC1 lead to neurodevelopmental delay and cerebellar degeneration. Multiple families with biallelic variants have been published, yet to date, only a single report of a monoallelic variant has been described, and functional evidence is sparse.

View Article and Find Full Text PDF

Genomic sequencing and clinical genomics have demonstrated that substantial subsets of atypical and/or severe disease presentations result from multilocus pathogenic variation (MPV) causing blended phenotypes. In an infant with a severe neurodevelopmental disorder, four distinct molecular diagnoses were found by exome sequencing (ES). The blended phenotype that includes brain malformation, dysmorphism, and hypotonia was dissected using the Human Phenotype Ontology (HPO).

View Article and Find Full Text PDF

The solute carrier (SLC) superfamily encompasses >400 transmembrane transporters involved in the exchange of amino acids, nutrients, ions, metals, neurotransmitters and metabolites across biological membranes. SLCs are highly expressed in the mammalian brain; defects in nearly 100 unique SLC-encoding genes (OMIM: https://www.omim.

View Article and Find Full Text PDF
Article Synopsis
  • - Neurodevelopmental disorders (NDDs) affect over 3% of the population, posing significant social and economic challenges; despite advances in genomics, many cases remain undiagnosed.
  • - A study of 234 new subjects and 20 previously unsolved Turkish families used genome-wide screening, identifying clear genetic causes in 75.2% of families, with 218 distinct genes linked to these disorders.
  • - Notably, 28.9% of solved families exhibited multilocus pathogenic variations, often due to identical-by-descent segments in their genomes; additional sequencing helped achieve diagnoses in 25% of previously undiagnosed families.
View Article and Find Full Text PDF