Publications by authors named "Jawhar Gharbi"

Nowadays, viruses are not only seen as causative agents of viral infectious diseases but also as valuable research materials for various biomedical purposes, including recombinant protein production. When expressed in living or cell-free expression systems, viral structural proteins self-assemble into virus-like particles (VLPs). Mimicking the native form and size of viruses and lacking the genetic material, VLPs are safe and highly immunogenic and thus can be exploited to develop antiviral vaccines.

View Article and Find Full Text PDF

The aim of the present study was, first, to clone the VP1 gene of the human coxsackievirus B4 strain E2 (CVB4E2) in the prokaryotic pUC19 plasmid expression vector then to compare it with the structural capsid proteins of the same strain using bioinformatic tools. PCR colony amplification followed through a restriction digestion analysis and sequencing process which affirmed the success of the cloning process. SDS-PAGE and Western Blotting were used to characterize the purified recombinant viral protein expressed in bacteria cells.

View Article and Find Full Text PDF

Several epidemiological studies demonstrated that coxsackievirus B4 (CVB4) causes viral pancreatitis and can ultimately result in type 1 diabetes mellitus (T1D). Prevention of CVB4 infection is therefore highly desirable. There is currently no vaccine or antiviral therapeutic reagent in clinical use.

View Article and Find Full Text PDF

Coxsackievirus B3 (CVB3) is a principal causative agent of viral myocarditis, meningitis and pancreatitis. There is no vaccine available for clinical use. It has been demonstrated that the primary molecular determinant of virulence phenotype is located in the 5' UTR of the viral genome.

View Article and Find Full Text PDF

The 5'UTR of the genomic RNA of CVB3, unusually long and rich on highly structured secondary structure, contains a conserved cis acting RNA element named the cryptic AUG (cAUG), where the cellular 48S complex is formed. In this study, we investigate the role of this cAUG in CVB3 translation, replication, and virulence. Mutant viral sub-genomic replicon RNA was constructed by site-directed mutagenesis.

View Article and Find Full Text PDF

Background: The West Nile virus is a highly contagious agent for a wide range of hosts. Its spread in the Mediterranean region raises several questions about its origin and the risk factors underlying the virus's dispersal.

Materials And Methods: The present study aims to reconstruct the temporal and spatial phylodynamics of West Nile virus lineage 2 in the Mediterranean region using 75 complete genome sequences from different host species retrieved from international databases.

View Article and Find Full Text PDF

In late December 2019, a novel coronavirus, namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), escaped the animal-human interface and emerged as an ongoing global pandemic with severe flu-like illness, commonly known as coronavirus disease 2019 (COVID-19). In this study, a molecular docking study was carried out for seventeen () structural analogues prepared from natural maslinic and oleanolic acids, screened against SARS-CoV-2 main protease. Furthermore, we experimentally validated the virtual data by measuring the half-maximal cytotoxic and inhibitory concentrations of each compound.

View Article and Find Full Text PDF

Unlabelled: Influenza A/H1N1 is widely considered to be a very evolutionary virus causing major public health problems. Since the pandemic of 2009, there has been a rapid rise in human Influenza virus characterization. However, little data is available in Tunisia regarding its genetic evolution.

View Article and Find Full Text PDF

Coxsackievirus B4 (CV-B4) is suspected to be an environmental factor that has the intrinsic capacity to damage the pancreatic beta cells and therefore causes insulitis and type 1 diabetes (T1D). Although vaccination against CV-B4 could reduce the incidence of this chronic auto-immune disease, there is currently no therapeutic reagent or vaccine in clinical use. By the employment of the Bac-to-Bac® vector system to express the major viral capsid protein, we contributed towards the development of a CV-B4 vaccine by producing CV-B4 virus-like particles (VLPs) from recombinant baculovirus in infected insect cells.

View Article and Find Full Text PDF

Coxsackie B4 (CV-B4), is a major cause of viral myocarditis, dilated cardiomyopathy, and pancreatitis. Like other human enteroviruses, CV-B4 is ubiquitous, excreted in the stool, transmitted by fecal-oral route, and persists in the environment. In the context of studies on CV-B4 infection, it is important to investigate how this virus can be eliminated and to show the possibility of contamination risk with a CV-B4 E2 infected Swiss albino mice.

View Article and Find Full Text PDF

In previous studies it was shown that inoculation of Swiss albino mice with CV-B4 E2 resulted in the production of serum IgG capable of enhancing the CV-B4 E2 infection of murine spleen cells cultures. To investigate whether such an enhancing activity of serum can play a role in vivo, we decided to study the CV-B4 E2 infection in mice exposed to successive inoculations of virus. In Swiss albino mice infected with CV-B4 E2 at the age of 21 days, anti-CV-B4 E2 neutralizing and enhancing activities of their serum peaked after 55 d.

View Article and Find Full Text PDF

It was demonstrated that specific IgG can enhance the infection with CV-B4, in vitro, in the human system. This enhancement could be involved in the pathophysiology of CV-B4 induced diseases. To investigate further the role of enhancing IgG in the infection with CV-B4 E2 in vivo, animal models are needed.

View Article and Find Full Text PDF

Diseases caused by food-borne pathogens constitute a major burden to consumers, food business operators, and national governments. Bacterial and viral pathogens are the major biotic factors influencing food safety. A vast array of culture dependent analytical methods and protocols have been developed.

View Article and Find Full Text PDF

The positive single-stranded RNA genome of the Coxsackievirus B3 (CVB3) contains a 5' untranslated region (UTR) which hosts the internal ribosome entry site (IRES) element that governs cap-independent translation initiation and a polyadenylated 3' UTR which is required for stimulating the IRES activity. Viral RNA genomes could circularize to regulate initiation of translation and RNA synthesis at 5' and 3' ends. Interactions could either take place by direct RNA-RNA contacts, through cellular protein bridges mediating RNA circularization or both.

View Article and Find Full Text PDF

Background: The aim of this study was to evaluate the ability of 15 serotypes of Salmonella to form biofilm on polystyrene, polyvinyl chloride (PVC) and glass surfaces. .

Methods: Initially slime production was assessed on CRA agar and hydrophobicity of 20 Salmonella strains isolated from poultry and human and two Salmonella enterica serovar Typhimurium references strains was achieved by microbial adhesion to n-hexadecane.

View Article and Find Full Text PDF

Coxsackievirus B3 (CVB3) causes viral myocarditis and can ultimately result in dilated cardiomyopathy. There is no vaccine available for clinical use. Translation initiation of CVB3 RNA is directed by an internal ribosome entry site within the 5'-untranslated region.

View Article and Find Full Text PDF

Influenza viruses are negative stranded segmented RNA viruses belonging to Orthomyxoviridae family. They are classified into three types A, B, and C. Type A influenza viruses are classified into subtypes according to the antigenic characters of the surface glycoproteins: hemagglutinin (H) and neuraminidase (N).

View Article and Find Full Text PDF

Coxsackievirus B3 (CVB3) causes viral myocarditis, and can ultimately result in dilated cardiomyopathy. There is no vaccine available for clinical use. In the present work, we assessed whether the Sabin3-like mutant of CVB3 could induce a protective immunity against virulent CVB3 Nancy and CVB4 E2 strains in mice by both oral and intraperitoneal (IP) routes.

View Article and Find Full Text PDF

Human enteroviruses (HEV) are one of the major causes of central nervous system (CNS) infections in pediatrics. A prospective study was conducted to assess the epidemiological, clinical, and laboratory characteristics of enterovirus (EV) infections of the CNS in children under 15-years-old, suspected of having viral CNS infections and admitted to the Pediatric Department of Monastir University Hospital, Tunisia. Enteroviral RNA was detected by 5' NCR nested RT-PCR assay in 33 % (20 out of 60) of cerebrospinal fluid specimens, whereas only six samples (10 %) were EV positive in cell culture.

View Article and Find Full Text PDF

Unlabelled: Internal ribosome entry site (IRES) elements fold into highly organized conserved secondary and probably tertiary structures that guide the ribosome to an internal site of the RNA at the IRES 3'end. The composition of the cellular proteome is under the control of multiple processes, one of the most important being translation initiation. In each poliovirus Sabin vaccine strain, a single point mutation in the IRES secondary-structure domain V is a major determinant of neurovirulence and translation attenuation.

View Article and Find Full Text PDF

Internal ribosome entry site (IRES) elements are highly structured RNA sequences that function to recruit ribosomes for the initiation of translation. In contrast to the canonical cap-binding, the mechanism of IRES-mediated translation initiation is still poorly understood. Translation initiation of the coxsackievirus B3 (CVB3), a causative agent of viral myocarditis, has been shown to be mediated by a highly ordered structure of the 5' untranslated region (5'UTR), which harbors an IRES.

View Article and Find Full Text PDF

Coxsackievirus B3 (CVB3) is a causative agent of viral myocarditis, meningitis and pancreatitis. CVB3 overcome their host cells by usurping the translation machinery to benefit viral gene expression. This is accomplished through alternative translation initiation in a cap independent manner at the viral internal ribosomal entry site.

View Article and Find Full Text PDF

Coxsackievirus B3 (CVB3) is an enterovirus of the family of Picornaviridae. The Group B coxsackieviruses include six serotypes (B1 to B6) that cause a variety of human diseases, including myocarditis, meningitis, and diabetes. Among the group B, the B3 strain is mostly studied for its cardiovirulence and its ability to cause acute and persistent infections.

View Article and Find Full Text PDF

Translation initiation of Coxsackievirus B3 (CVB3) RNA is directed by an internal ribosome entry site (IRES) within the 5' untranslated region. Host cell factors involved in this process include some canonical translation factors and additional RNA-binding proteins. We have, previously, described that the Sabin3-like mutation (U475 → C) introduced in CVB3 genome led to a defective mutant with a serious reduction in translation efficiency.

View Article and Find Full Text PDF