Background: In the case of COVID-19 patients, it has been observed that the immune system of the infected person exhibits an extreme inflammatory response known as cytokine release syndrome (CRS) where the inflammatory cytokines are swiftly produced in quite large amounts in response to infective stimuli. Numerous case studies of COVID-19 patients with severe symptoms have documented the presence of higher plasma concentrations of human interleukin-6 (IL-6), which suggests that IL-6 is a crucial factor in the pathophysiology of the disease. In order to prevent CRS in COVID-19 patients, the drugs that can exhibit binding interactions with IL-6 and block the signaling pathways to decrease the IL-6 activity may be repurposed.
View Article and Find Full Text PDFIn recent years, the growing research interests in the applications of plant and fruit extracts (synthetic/stabilization materials for the nanomaterials, medicinal applications, functional foods, and nutraceuticals) have led to the development of new analytical techniques to be utilized for identifying numerous properties of these extracts. One of the main properties essential for the applicability of these plant extracts is the antioxidant capacity (AOC) that is conventionally determined by spectrophotometric techniques. Nowadays, electrochemical methodologies are emerging as alternative tools for quantifying this particular property of the extract.
View Article and Find Full Text PDFInt J Phytoremediation
October 2020
In this study, zinc ferrite nanoparticles (ZF-NPs) were synthesized using aqueous seed extract of as a bio-reducing and stabilizing agent. FTIR, SEM, FE-SEM, XRD, and TGA have been used for characterizing ZF-NPs. The results showed that stabilized ZF-NPs have high purity and size range of 60-80 nm.
View Article and Find Full Text PDFConversion of nitroaniline (NA), a highly toxic pollutant that has been released into aquatic systems due to unmanaged industrial development in recent years, into the less harmful or a useful counterpart is the need of the hour. Various methods for its conversion and removal have been explored. Owing to its nominal features of advanced effectiveness, the chemical reduction of 4-NA using various different nanocatalytic systems is one such approach that has attracted tremendous interest over the past few years.
View Article and Find Full Text PDFExtraction of toxic heavy metal ions from aqueous medium using poly(N-isopropylmethacrylamide-acrylic acid) (P(NiPmA-Ac)) microgels as adsorbent has been investigated in present study. P(NiPmA-Ac) microgel particles were prepared by free radical precipitation polymerization in aqueous medium. Morphology and size of the prepared microgel particles was investigated by transmission electron microscopy (TEM).
View Article and Find Full Text PDFFood Addit Contam Part A Chem Anal Control Expo Risk Assess
April 2020
Potential hazardous effects caused by non-biodegradable plastics are considered to be one of the most widely discussed and notable challenges of the 21st century. To address this particular problem, immense efforts have been devoted to the preparation of biodegradable plastics material. This green approach mitigates the major drawbacks e.
View Article and Find Full Text PDFNitrophenol is common carcinogenic pollutant known for its adverse effects on human beings and aquatic life. During the last few decades, the chemical reduction of nitrophenol compounds has been widely reported as the advanced removal methodology for such hazardous dyes from aqueous reservoirs. Many researchers have utilized different nanocatalytic systems using sodium borohydride (NaBH) as the reducing agent for acquiring industrially useful reduction product of aminophenol by carrying out the chemical reduction of nitrophenols.
View Article and Find Full Text PDFThis review is based on the adsorption characteristics of sorghum (Sorghum bicolor) for removal of heavy metals from aqueous media. Different parameters like pH, temperature of the medium, sorghum concentration, sorghum particle size, contact time, stirring speed and heavy metal concentration control the adsorption efficiency of sorghum biomass for heavy metal ions. Sorghum biomass showed maximum efficiency for removal of heavy metal ions in the pH range of 5 to 6.
View Article and Find Full Text PDF