Publications by authors named "Jawayria Mujtaba"

CoS/C microprisms with adsorption-catalysis synergistic effects were designed to be sulfur hosts in room-temperature sodium-sulfur batteries. CoS/C can act as a polysulfide mediator to inhibit the shuttle effect and as a catalyst to accelerate polysulfide redox kinetics, achieving enhanced capabilities of 623 mA h g after 870 cycles at 1 A g.

View Article and Find Full Text PDF

The practical applications of room-temperature sodium-sulfur (RT Na-S) batteries have been greatly hindered by the natural sluggish reaction kinetics of sulfur and the shuttle effect of sodium polysulfide (NaPSs). Herein, oxygen vacancy (OV)-mediated amorphous GeO/nitrogen doped carbon (donated as GeO/NC) composites were well designed as sulfur hosts for RT Na-S batteries. Experimental and density functional theory studies show that the introduction of oxygen vacancies on GeO/NC can effectively immobilize polysulfides and accelerate the redox kinetics of polysulfides.

View Article and Find Full Text PDF

Gaseous oxygen plays a vital role in driving the metabolism of living organisms and has multiple agricultural, medical, and technological applications. Different methods have been discovered to produce oxygen, including plants, oxygen concentrators and catalytic reactions. However, many such approaches are relatively expensive, involve challenges, complexities in post-production processes or generate undesired reaction products.

View Article and Find Full Text PDF

Wireless nano-/micromotors powered by chemical reactions and/or external fields generate motive forces, perform tasks, and significantly extend short-range dynamic responses of passive biomedical microcarriers. However, before micromotors can be translated into clinical use, several major problems, including the biocompatibility of materials, the toxicity of chemical fuels, and deep tissue imaging methods, must be solved. Nanomaterials with enzyme-like characteristics (e.

View Article and Find Full Text PDF

Nano/-micromotors self-assembling into static and dynamic clusters are of considerable promise to study smart, interactive, responsive, and adaptive nano/-micromaterials that can mimic spatio-temporal patterns, swarming, and collective behaviors widely observed in nature. Previously, the dynamic self-assembly of bubble-propelled catalytic micromotors initiated by capillary forces has been reported. This manuscript shows novel self-assembly modes of magnetic/catalytic Ti/FeNi/Pt tubular micromotors.

View Article and Find Full Text PDF

A controllable generation of oxygen gas during the decomposition of hydrogen peroxide by the microreactors made of tubular catalytic nanomembranes has recently attracted considerable attention. Catalytic microtubes play simultaneous roles of the oxygen bubble producing microreactors and oxygen bubble-driven micropumps. An autonomous pumping of peroxide fuel takes place through the microtubes by the recoiling microbubbles.

View Article and Find Full Text PDF

We report a facile synthesis of a novel cobalt oxide (Co3O4) hierarchical nanostructure, in which crystalline core-amorphous shell Co3O4 nanoparticles with a bimodal size distribution are uniformly dispersed on ultrathin Co3O4 nanosheets. When tested as anode materials for lithium ion batteries, the as-prepared Co3O4 hierarchical electrodes delivered high lithium storage properties comparing to the other Co3O4 nanostructures, including a high reversible capacity of 1053.1 mAhg(-1) after 50 cycles at a current density of 0.

View Article and Find Full Text PDF