Silicon (Si) is recognized as a promising anode material for next-generation anodes due to its high capacity. However, large volume expansion and active particle pulverization during cycling rapidly deteriorate the battery performance. The relationship between Si anode particle size and particle pulverization, and the structure evolution of Si particles during cycling is not well understood.
View Article and Find Full Text PDFThe disposal of hazardous waste of any form has become a great concern for the industrial sector due to increased environmental awareness. The increase in usage of hydroprocessing catalysts by petrochemical industries and lithium-ion batteries (LIBs) in portable electronics and electric vehicles will soon generate a large amount of scrap and create significant environmental problems. Like general electronic wastes, spent catalysts and LIBs are currently discarded in municipal solid waste and disposed of in landfills in the absence of policy and feasible technology to drive alternatives.
View Article and Find Full Text PDFThe development of new battery technology that utilizes abundant electrode materials that are environmentally benign is an important area of research. To alleviate the reliance on Li-ion batteries new energy storage mechanisms are urgently needed. To address these issues, MnO nanowires were investigated as a possible electrode material for use in rechargeable Al ion batteries that can operate in aqueous conditions.
View Article and Find Full Text PDFExperimental measurements used to validate previous electronic band structure calculations for olivine LiFePO and its delithiated phase, FePO, have been re-investigated in this study. Experimental band gaps of LiFePO and FePO have been determined to be 6.34 eV and 3.
View Article and Find Full Text PDFOrganic electrode materials are a highly promising and environmentally benign class of battery materials with radical polymers being at the forefront of this research. Herein, we report the first example of the 1,1,3,3-tetramethylisoindolin-2-yloxyl class of nitroxides as an organic electrode material and the synthesis and application of a novel styrenic nitroxide polymer, poly(5-vinyl-1,1,3,3-tetramethylisoindolin-2-yloxyl) (PVTMIO). The polymer was synthesized from the precursor monomer, 2-methoxy-5-vinyl-1,1,3,3-tetramethylisoindoline, and subsequent oxidative deprotection yielded the electroactive radical species.
View Article and Find Full Text PDF