Publications by authors named "Jaw-Ching Liu"

Myeloid cell leukemia-1 (Mcl-1), an antiapoptotic Bcl-2 family member, is overexpressed in many types of human cancer and associates with cell immortalization, malignant transformation, and chemoresistance. Glycogen synthase kinase-3beta (GSK-3beta), a key component of the Wnt signaling pathway, is involved in multiple physiologic processes such as protein synthesis, tumorigenesis, and apoptosis. Here, we report that expression of Mcl-1 was correlated with phosphorylated GSK-3beta (p-GSK-3beta) at Ser(9) (an inactivated form of GSK-3beta) in multiple cancer cell lines and primary human cancer samples.

View Article and Find Full Text PDF

Apoptosis is critical for embryonic development, tissue homeostasis, and tumorigenesis and is determined largely by the Bcl-2 family of antiapoptotic and prosurvival regulators. Here, we report that glycogen synthase kinase 3 (GSK-3) was required for Mcl-1 degradation, and we identified a novel mechanism for proteasome-mediated Mcl-1 turnover in which GSK-3beta associates with and phosphorylates Mcl-1 at one consensus motif ((155)STDG(159)SLPS(163)T; phosphorylation sites are in italics), which will lead to the association of Mcl-1 with the E3 ligase beta-TrCP, and beta-TrCP then facilitates the ubiquitination and degradation of phosphorylated Mcl-1. A variant of Mcl-1 (Mcl-1-3A), which abolishes the phosphorylations by GSK-3beta and then cannot be ubiquitinated by beta-TrCP, is much more stable than wild-type Mcl-1 and able to block the proapoptotic function of GSK-3beta and enhance chemoresistance.

View Article and Find Full Text PDF

IFN-inducible proteins are known to mediate IFN-directed antitumor effects. The human IFN-inducible protein absent in melanoma 2 (AIM2) gene encodes a 39-kDa protein, which contains a 200-amino-acid repeat as a signature of HIN-200 family (hematopoietic IFN-inducible nuclear proteins). Although AIM2 is known to inhibit fibroblast cell growth in vitro, its antitumor activity has not been shown.

View Article and Find Full Text PDF

Endostatin, an angiogenesis inhibitor tested in multiple clinical trials, selectively targets neovascular endothelial cells, suppressing tumor growth. To enhance the therapeutic efficacy of endostatin, we fused endostatin with cytosine deaminase, which converts a prodrug 5-flucytosine into a cytotoxic 5-fluorouracil. This therapeutic strategy was developed based on the observation that the endostatin-green fluorescence protein gene and endostatin-luciferase gene selectively target to endothelial cells in vitro and to the tumor site in vivo, respectively.

View Article and Find Full Text PDF

Beta-catenin is upregulated in many human cancers and considered to be an oncogene. Hepatocellular carcinoma (HCC) is one of the most prevalent human malignancies, and individuals who are chronic hepatitis B virus (HBV) carriers have a greater than 100-fold increased relative risk of developing HCC. Here we report a mechanism by which HBV-X protein (HBX) upregulates beta-catenin.

View Article and Find Full Text PDF

Survivin is expressed in many cancers but not in normal adult tissues and is transcriptionally regulated. To test the feasibility of using the survivin promoter to induce cancer-specific transgene expression in lung cancer gene therapy, a vector expressing a luciferase gene driven by the survivin promoter was constructed and evaluated in vitro and in vivo. We found that the survivin promoter was generally more highly activated in cancer cell lines than in normal and immortalized normal cell lines.

View Article and Find Full Text PDF

The genome of the Neodiprion sertifer nucleopolyhedrovirus (NeseNPV), which infects the European pine sawfly, N. sertifer (Hymenoptera: Diprionidae), was sequenced and analyzed. The genome was 86,462 bp in size.

View Article and Find Full Text PDF