Sci Total Environ
November 2024
To shift towards low-fossil carbon economies, making more out of residual biomass is increasingly promoted. Yet, it remains unclear if implementing advanced technologies to reuse these streams really achieves net environmental benefits compared to current management practices. By integrating spatially-explicit resource flow analysis, consequential life cycle assessment (LCA), and uncertainty analysis, we propose a single framework to quantify the residual biomass environmental baseline of a territory, and apply it to the case of France.
View Article and Find Full Text PDFMicrobes are powerful upgraders, able to convert simple substrates to nutritional metabolites at rates and yields surpassing those of higher organisms by a factor of 2 to 10. A summary table highlights the superior efficiencies of a whole array of microbes compared to conventionally farmed animals and insects, converting nitrogen and organics to food and feed. Aiming at the most resource-efficient class of microbial proteins, deploying the power of open microbial communities, coined here as 'symbiotic microbiomes' is promising.
View Article and Find Full Text PDFTransforming residual biomass into edible ingredients is increasingly promoted to alleviate the environmental impacts of food systems. Yet, these approaches mostly rely on emerging technologies and constrained resources, and their environmental benefits remain unclear. By combining process-based consequential life cycle analysis, uncertainty assessment and biomass resource estimation, we quantified the impacts of deploying waste-to-nutrition pathways, here applied to the upgrading of agrifood co-products by solid-state fermentation (SSF).
View Article and Find Full Text PDFBiotechnol Adv
December 2021
Residual biomass is acknowledged as a key sustainable feedstock for the transition towards circular and low fossil carbon economies to supply whether energy, chemical, material and food products or services. The latter is receiving increasing attention, in particular in the perspective of decoupling nutrition from arable land demand. In order to provide a comprehensive overview of the technical possibilities to convert residual biomasses into edible ingredients, we reviewed over 950 scientific and industrial records documenting existing and emerging waste-to-nutrition pathways, involving over 150 different feedstocks here grouped under 10 umbrella categories: (i) wood-related residual biomass, (ii) primary crop residues, (iii) manure, (iv) food waste, (v) sludge and wastewater, (vi) green residual biomass, (vii) slaughterhouse by-products, (viii) agrifood co-products, (ix) C gases and (x) others.
View Article and Find Full Text PDF