Publications by authors named "Javoris V Hollingsworth"

Lateral diffusion of polymer molecules at the interfaces between immiscible oil and water is investigated at the single molecular level. The interfaces between water and alkanes are chosen as the model systems and polyethylene oxide (PEO) is the model polymer. Fluorescence correlation spectroscopy is used to measure the interfacial diffusion of fluorescence-labeled PEO with its molecular weight ranging over more than an order of magnitude.

View Article and Find Full Text PDF

Linear rheological properties and yielding behavior of polystyrene core and poly (N-isopropylacrylamide) (PNIPAM) shell microgels were investigated to understand the transition from repulsive glass (RG) to attractive glass (AG) and the A3 singularity. Due to the volume phase transition of PNIPAM in aqueous solution, the microgel-microgel interaction potential gradually changes from repulsive to attractive. In temperature and frequency sweep experiments, the storage modulus (G') and loss modulus (G″) increased discontinuously when crossing the RG-to-AG transition line, while G' at low frequency exhibited a different volume fraction (Φ) dependence.

View Article and Find Full Text PDF

A facile approach using click chemistry is demonstrated for immobilization of metalloporphyrins onto the surface of silica-coated iron oxide particles. Oleic-acid stabilized iron oxide nanocrystals were prepared by thermal decomposition of iron(III) acetylacetonate. Their crystallinity, morphology, and superparamagnetism were determined using X-ray diffraction, transmission electron microscopy, and a superconducting quantum interference device.

View Article and Find Full Text PDF

The state transition from gel to glass is studied in a biphasic mixture of polystyrene core/poly(N-isopropylacrylamide) shell (CS) microgels and sulfonated polystyrene (PSS) particles. At 35 °C, the interaction between CS microgels is due to short-range van der Waals attraction, while that between PSS particles is from long-range electrostatic repulsion. During the variation of the relative ratio of the two species at a fixed apparent total volume fraction, the mixture exhibits a gel-to-defective gel-to-glass transition.

View Article and Find Full Text PDF

A series of microgel particles composed of a polystyrene (PS) core and a thermo-sensitive poly(N-isopropylacrylamide) (PNIPAM) shell with different shell thicknesses were investigated to elucidate the effect of microgel softness on its shear thickening behavior. Since the softness of the microgels increases with decreasing temperature through the volume phase transition effect of PNIPAM shell, the measured softness parameter, n, which is derived from the Zwanzig-Mountain equation, was used to measure and describe the combined influences of temperature and shell thickness. Confocal microscopy is used to investigate the interaction potential between microgel particles with different softness parameters.

View Article and Find Full Text PDF

Rheological measurements are utilized to examine the yielding behavior of a polystyrene (PS) core and poly(N-isopropylacrylamide) (PNIPAM) shell microgel system with varying shell/core ratio. For a shell/core ratio of 0.15 at high concentrations, the suspensions show a typical hard sphere (HS) yielding response where the loss modulus (G″) exhibits a single peak due to cage breaking.

View Article and Find Full Text PDF

Cells are organized on length scales ranging from ångström to micrometres. However, the mechanisms by which ångström-scale molecular properties are translated to micrometre-scale macroscopic properties are not well understood. Here we show that interactions between diverse synthetic, multivalent macromolecules (including multi-domain proteins and RNA) produce sharp liquid-liquid-demixing phase separations, generating micrometre-sized liquid droplets in aqueous solution.

View Article and Find Full Text PDF

The aggregation of meso-tetra(4-sulfonatophenyl)porphyrin (H(2)TPPS(4-)) in phosphate solutions was investigated as a function of pH, concentration, time, ionic strength, and solution preparation (either from dilution of a freshly prepared 2 mM stock or by direct preparation of μM solution concentrations) using a combination of complementary analytical techniques. UV-vis and fluorescence spectroscopy indicated the formation of staggered, side-by-side (J-type) assemblies. Their size and self-associative behavior were determined using analytical ultracentrifugation and small-angle X-ray scattering.

View Article and Find Full Text PDF