The COVID-19 pandemic has resulted in millions of deaths globally, and while several diagnostic systems were proposed, real-time reverse transcription polymerase chain reaction (RT-PCR) remains the gold standard. However, diagnostic reagents, including enzymes used in RT-PCR, are subject to centralized production models and intellectual property restrictions, which present a challenge for less developed countries. With the aim of generating a standardized One-Step open RT-qPCR protocol to detect SARS-CoV-2 RNA in clinical samples, we purified and tested recombinant enzymes and a non-proprietary buffer.
View Article and Find Full Text PDFReverse transcription-loop-mediated isothermal amplification (RT-LAMP) has gained popularity for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The high specificity, sensitivity, simple protocols, and potential to deliver results without the use of expensive equipment has made it an attractive alternative to RT-PCR. However, the high cost per reaction, the centralized manufacturing of required reagents, and their distribution under cold chain shipping limit RT-LAMP's applicability in low-income settings.
View Article and Find Full Text PDFThe COVID-19 pandemic has resulted in millions of deaths globally, and while several diagnostic systems were proposed, real-time reverse transcription polymerase chain reaction (RT-PCR) remains the gold standard. However, diagnostic reagents, including enzymes used in RT-PCR, are subject to centralized production models and intellectual property restrictions, which present a challenge for less developed countries. With the aim of generating a standardized One-Step open RT-qPCR protocol to detect SARS-CoV-2 RNA in clinical samples, we purified and tested recombinant enzymes and a non-proprietary buffer.
View Article and Find Full Text PDFPolyethylene terephthalate (PET) is one of the most widely used synthetic plastics in the packaging industry, and consequently has become one of the main components of plastic waste found in the environment. However, several microorganisms have been described to encode enzymes that catalyze the depolymerization of PET. While most known PET hydrolases are thermophilic and require reaction temperatures between 60°C and 70°C for an efficient hydrolysis of PET, a partial hydrolysis of amorphous PET at lower temperatures by the polyester hydrolase PETase from the mesophilic bacterium Ideonella sakaiensis has also been reported.
View Article and Find Full Text PDFRT-LAMP (reverse transcription - Loop-mediated isothermal amplification) has gained popularity for the detection of SARS-CoV-2. The high specificity, sensitivity, simple protocols and potential to deliver results without the use of expensive equipment has made it an attractive alternative to RT-PCR. However, the high cost per reaction, the centralized manufacturing of required reagents and their distribution under cold chain shipping limits RT-LAMP's applicability in low-income settings.
View Article and Find Full Text PDFCullin-RING E3 ligases (CRLs) are elongated and bowed protein complexes that transfer ubiquitin over 60 Å to proteins targeted for proteasome degradation. One such CRL contains the ankyrin repeat and SOCS box protein 9 (ASB9), which binds to and partially inhibits creatine kinase (CK). While current models for the ASB9-CK complex contain some known interface residues, the overall structure and precise interface of the ASB9-CK complex remains unknown.
View Article and Find Full Text PDFThe forkhead family of transcription factors (Fox) controls gene transcription during key processes such as regulation of metabolism, embryogenesis, and immunity. Structurally, Fox proteins feature a conserved DNA-binding domain known as forkhead. Interestingly, solved forkhead structures of members from the P subfamily (FoxP) show that they can oligomerize by three-dimensional domain swapping, whereby structural elements are exchanged between adjacent subunits, leading to an intertwined dimer.
View Article and Find Full Text PDF