We reported that knockdown of the antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptotic death of several human tumor cell lines, but not normal cells, suggesting this approach for selective therapy against different types of cancer. In order to translate these results to a preclinical scenario, we characterized the murine noncoding mitochondrial RNAs (ncmtRNAs) and performed in vivo knockdown in syngeneic murine melanoma models. Mouse ncmtRNAs display structures similar to the human counterparts, including long double-stranded regions arising from the presence of inverted repeats.
View Article and Find Full Text PDFHallmarks of cancer are fundamental principles involved in cancer progression. We propose an additional generalized hallmark of malignant transformation corresponding to the differential expression of a family of mitochondrial ncRNAs (ncmtRNAs) that comprises sense and antisense members, all of which contain stem-loop structures. Normal proliferating cells express sense (SncmtRNA) and antisense (ASncmtRNA) transcripts.
View Article and Find Full Text PDFBackground: Bladder cancer is a significant cause of morbidity and mortality with a high recurrence rate. Early detection of bladder cancer is essential in order to remove the tumor, to preserve the organ and to avoid metastasis. The aim of this study was to analyze the differential expression of mitochondrial non-coding RNAs (sense and antisense) in cells isolated from voided urine of patients with bladder cancer as a noninvasive diagnostic assay.
View Article and Find Full Text PDF