Hypoglycosylation of α-dystroglycan (α-DG) resulting from deficiency of protein O-mannosyltransferase 1 (POMT1) may cause severe neuromuscular dystrophies with brain and eye anomalies, named dystroglycanopathies. The retinal involvement of these disorders motivated us to generate a conditional knockout (cKO) mouse experiencing a Pomt1 intragenic deletion (exons 3-4) during the development of photoreceptors, mediated by the Cre recombinase expressed from the cone-rod homeobox (Crx) gene promoter. In this mouse, retinal α-DG was unglycosylated and incapable of binding laminin.
View Article and Find Full Text PDFLight causes damage to the retina (phototoxicity) and decreases photoreceptor responses to light. The most harmful component of visible light is the blue wavelength (400-500 nm). Different filters have been tested, but so far all of them allow passing a lot of this wavelength (70%).
View Article and Find Full Text PDFIn order to approach the function of the retinal dystrophy CERKL gene we generated a novel knockout mouse model by cre-mediated targeted deletion of the Cerkl first exon and proximal promoter. The excised genomic region (2.3kb) encompassed the first Cerkl exon, upstream sequences including the proximal promoter and the initial segment of the first intron.
View Article and Find Full Text PDF