Squamous cell carcinoma of the nasopharynx is responsible for 0.7% of all malignant tumors worldwide, with the highest incidence in the population of southern China and Southeast Asia. The standard treatment for locally advanced disease consists of a combination of radiotherapy and chemotherapy in different schedules.
View Article and Find Full Text PDFPrevious studies have suggested that plants can modulate gene expression in pathogenic fungi by producing small RNAs (sRNAs) that can be translocated into the fungus and mediate gene silencing, which may interfere with the infection mechanism of the intruder. We sequenced sRNAs and mRNAs in early phases of the (tomato)- interaction and examined the potential of plant sRNAs to silence their predicted mRNA targets in the fungus. Almost a million unique plant sRNAs were identified that could potentially target 97% of all fungal genes.
View Article and Find Full Text PDFstrain 212 (PO212) is a filamentous fungus belonging to the division Ascomycete. PO212 acts as an effective biocontrol agent against several pathogens in a variety of horticultural crops including f.sp.
View Article and Find Full Text PDFPlant immune responses are triggered during the interaction with pathogens. The fungus Botrytis cinerea has previously been reported to use small RNAs (sRNAs) as effector molecules capable of interfering with the host immune response. Conversely, a host plant produces sRNAs that may interfere with the infection mechanism of an intruder.
View Article and Find Full Text PDFThe non-pathogenic Fo47 is able to protect (pepper) but not in (tomato) against the pathogen . Transcriptomics of the plant during the interaction with Fo47 shows the induction of distinct set of genes in pepper and tomato. The number of differentially expressed (DE) genes in pepper (231 DE genes) is greater than the number of DE genes in tomato (39 DE genes) at 2 days after the treatment with Fo47.
View Article and Find Full Text PDFBackground: Fungi of the genus Botrytis (presently containing ~ 35 species) are able to infect more than 1400 different plant species and cause losses in a wide range of crops of economic importance. The best studied species is B. cinerea, which has a broad host range and is one of the best studied necrotrophic plant pathogenic fungi.
View Article and Find Full Text PDFJ Plant Physiol
December 2018
The treatment of the cotyledons of pepper plants with vanillyl nonanoate (VNT), a synthetic capsinoid similar to capsiate, protected systemically the plant against a root pathogen (the hemibiotrophic oomycete Phytophthora capsici) and an aerial pathogen (the necrotrophic fungus Botrytis cinerea). VNT treatment reduced both the symptoms and the colonization by these pathogens. VNT induced systemically two PR (Pathogenesis-related) genes and a gene involved in phytoalexin biosynthesis.
View Article and Find Full Text PDFThe grey mould Botrytis cinerea causes disease in more than 1000 plant species, including important crops. The interaction between Botrytis and its (potential) hosts is determined by quantitative susceptibility and virulence traits in both interacting partners, resulting in a greyscale of disease outcomes. Fungal infection was long thought to rely mainly on its capacity to kill the host plant and degrade plant tissue.
View Article and Find Full Text PDFis a plant-pathogenic fungus producing apothecia as sexual fruiting bodies. To study the function of mating type () genes, single-gene deletion mutants were generated in both genes of the locus and both genes of the locus. Deletion mutants in two genes were entirely sterile, while mutants in the other two genes were able to develop stipes but never formed an apothecial disk.
View Article and Find Full Text PDFCotyledon wounding in pepper caused the early generation of hydrogen peroxide both locally (cotyledons) and systemically (upper true leaves). However, 72 h later there is a different wound response between local and systemic organs, as shown by resistance to the pathogenic fungus Botrytis cinerea, that increased locally and decreased systemically. Signaling by ethylene and jasmonic acid was assessed by using two inhibitors: 1-methylcyclopropene (MCP, inhibitor of ethylene receptors) and ibuprofen (inhibitor of jasmonate biosynthesis).
View Article and Find Full Text PDF