Objective: Epilepsy surgery is the best therapeutic option for patients with drug-resistant focal epilepsy. During presurgical investigation, interictal spikes can provide important information on eligibility, lateralisation and localisation of the surgical target. However, their relationship to epileptogenic tissue is variable.
View Article and Find Full Text PDFObjectives: To determine if radiological evidence of blood brain barrier (BBB) dysfunction, measured using Dynamic Contrast Enhanced MRI (DCE-MRI), correlates with serum matrix metalloproteinase (MMP) levels in traumatic brain injury (TBI) patients, and thereby, identify a potential biomarker for BBB dysfunction.
Patients And Methods: 20 patients with a mild, moderate, or severe TBI underwent a DCE-MRI scan and BBB dysfunction was interpreted from K. K is a measure of capillary permeability that reflects the efflux of gadolinium contrast into the extra-cellar space.
Objective: The irritative zone - the area generating epileptic spikes - can be studied non-invasively during the interictal period using Electrical Source Imaging (ESI) and simultaneous electroencephalography-functional magnetic resonance imaging (EEG-fMRI). Although the techniques yield results which may overlap spatially, differences in spatial localization of the irritative zone within the same patient are consistently observed. To investigate this discrepancy, we used Blood Oxygenation Level Dependent (BOLD) functional connectivity measures to examine the underlying relationship between ESI and EEG-fMRI findings.
View Article and Find Full Text PDFUltra-high field magnetic resonance imaging data obtained using a multi-echo gradient echo sequence has been shown to contain information on tissue microstructure. Quantitative assessment of water fraction, relaxation time and frequency shift using multi-compartment signal modelling may help improve our understanding of diseases and disorders affecting the human brain. In this study, we explored tissue microstructure information by analysing voxel compartment water fraction and frequency shifts derived from 7 T multi-echo gradient recalled echo MRI data.
View Article and Find Full Text PDFPurpose: Magnetic susceptibility is a physical property of matter that varies depending on chemical composition and abundance of different molecular species. Interest is growing in mapping of magnetic susceptibility in the human brain using magnetic resonance imaging techniques, but the influences affecting the mapped values are not fully understood.
Methods: We performed quantitative susceptibility mapping on 7 Tesla (T) multiple echo time gradient recalled echo data and evaluated the trend in 10 regions of the human brain.