Background: The citrus genus comprises a number of sensitive tropical and subtropical species to cold stress, which limits global citrus distribution to certain latitudes and causes major economic loss. We used RNA-Seq technology to analyze changes in the transcriptome of Valencia delta seedless orange in response to long-term cold stress grafted on two frequently used citrus rootstocks: Carrizo citrange (CAR), considered one of the most cold-tolerant accessions; C. macrophylla (MAC), a very sensitive one.
View Article and Find Full Text PDFBackground: Interspecific hybridizations and admixtures were key in Citrus domestication, but very little is known about their impact at the transcriptomic level. To determine the effects of genome introgressions on gene expression, the transcriptomes of the pulp and flavedo of three pure species (citron, pure mandarin and pummelo) and four derived domesticated genetic admixtures (sour orange, sweet orange, lemon and domesticated mandarin) have been analyzed at color break.
Results: Many genes involved in relevant physiological processes for domestication, such sugar/acid metabolism and carotenoid/flavonoid synthesis, were differentially expressed among samples.
We performed genomic analyses on species and varieties of the genus Citrus to identify several determinants of domestication, based on the pattern of pummelo [Citrus maxima (Burr. f) Merr] and mandarin (Citrus reticulata Blanco) admixture into the ancestral genome, as well as population genetic tests at smaller scales. Domestication impacted gene families regulating pivotal components of citrus flavor (such as acidity) because in edible mandarin varieties, chromosome areas with negative Tajimas values were enriched with genes associated with the regulation of citric acid.
View Article and Find Full Text PDFWe performed genomic analyses on wild species of the genus Citrus to identify major determinants of evolution. The most notable effect occurred on the pathogen-defense genes, as observed in many other plant genera. The gene space was also characterized by changes in gene families intimately related to relevant biochemical properties of citrus fruit, such as pectin modifying enzymes, HDR (4-hydroxy-3-methylbut-2-enyl diphosphate reductase) genes, and O-methyltransferases.
View Article and Find Full Text PDFBackground: Abscission is an active, organized, and highly coordinated cell separation process enabling the detachment of aerial organs through the modification of cell-to-cell adhesion and breakdown of cell walls at specific sites on the plant body known as abscission zones. In Arabidopsis thaliana, abscission of floral organs and cauline leaves is regulated by the interaction of the hormonal peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), a pair of redundant receptor-like protein kinases, HAESA (HAE) and HAESA-LIKE2 (HSL2), and SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) co-receptors. However, the functionality of this abscission signaling module has not yet been demonstrated in other plant species.
View Article and Find Full Text PDFis an extremely important genus in terms of world fruit production. Despite its economic importance and the small genome sizes of its species (2 = 18, 1C = 430 ± 68 Mbp), entire genomic assemblies have only recently become available for some of its representatives. Together with the previous CMA/DAPI banding and fluorescence in situ hybridization (FISH) in the group, these data are important for understanding the complex relationships between its species and for assisting breeding programs.
View Article and Find Full Text PDFSpeciation of the genus Citrus from a common ancestor has recently been established to begin ∼8 Ma during the late Miocene, a period of major climatic alterations. Here, we report the changes in activity of Citrus LTR retrotransposons during the process of diversification that gave rise to the current Citrus species. To reach this goal, we analyzed four pure species that diverged early during Citrus speciation, three recent admixtures derived from those species and an outgroup of the Citrus clade.
View Article and Find Full Text PDFBackground: Harvest time is a relevant economic trait in citrus, and selection of cultivars with different fruit maturity periods has a remarkable impact in the market share. Generation of early- and late-maturing cultivars is an important target for citrus breeders, therefore, generation of knowledge regarding the genetic mechanisms controlling the ripening process and causing the early and late phenotypes is crucial. In this work we analyze the evolution of the transcriptome during fruit ripening in 3 sport mutations derived from the Fina clementine (Citrus clementina) mandarin: Clemenules (CLE), Arrufatina (ARR) and Hernandina (HER) that differ in their harvesting periods.
View Article and Find Full Text PDFFruits have been traditionally classified into two categories based on their capacity to produce and respond to ethylene during ripening. Fruits whose ripening is associated to a peak of ethylene production and a respiration burst are referred to as climacteric, while those that are not are referred to as non-climacteric. However, an increasing body of literature supports an important role for ethylene in the ripening of both climacteric and non-climacteric fruits.
View Article and Find Full Text PDFThe genus Citrus, comprising some of the most widely cultivated fruit crops worldwide, includes an uncertain number of species. Here we describe ten natural citrus species, using genomic, phylogenetic and biogeographic analyses of 60 accessions representing diverse citrus germ plasms, and propose that citrus diversified during the late Miocene epoch through a rapid southeast Asian radiation that correlates with a marked weakening of the monsoons. A second radiation enabled by migration across the Wallace line gave rise to the Australian limes in the early Pliocene epoch.
View Article and Find Full Text PDFBackground: After its domestication, rice cultivation expanded from tropical regions towards northern latitudes with temperate climate in a progressive process to overcome limiting photoperiod and temperature conditions. This process has originated a wide range of diversity that can be regarded as a valuable resource for crop improvement. In general, current rice breeding programs have to deal with a lack of both germplasm accessions specifically adapted to local agro-environmental conditions and adapted donors carrying desired agronomical traits.
View Article and Find Full Text PDFPrevious RNA-Seq studies in citrus have been focused on physiological processes relevant to fruit quality and productivity of the major species, especially sweet orange. Less attention has been paid to vegetative or reproductive tissues, while most Citrus species have never been analysed. In this work, we characterized the transcriptome of vegetative and reproductive tissues from 12 Citrus species from all main phylogenetic groups.
View Article and Find Full Text PDFCitrus genus includes some of the most important cultivated fruit trees worldwide. Despite being extensively studied because of its commercial relevance, the origin of cultivated citrus species and the history of its domestication still remain an open question. Here, we present a phylogenetic analysis of the chloroplast genomes of 34 citrus genotypes which constitutes the most comprehensive and detailed study to date on the evolution and variability of the genus Citrus.
View Article and Find Full Text PDFBackground: Transposable-element mediated chromosomal rearrangements require the involvement of two transposons and two double-strand breaks (DSB) located in close proximity. In radiobiology, DSB proximity is also a major factor contributing to rearrangements. However, the whole issue of DSB proximity remains virtually unexplored.
View Article and Find Full Text PDFCultivated citrus are selections from, or hybrids of, wild progenitor species whose identities and contributions to citrus domestication remain controversial. Here we sequence and compare citrus genomes--a high-quality reference haploid clementine genome and mandarin, pummelo, sweet-orange and sour-orange genomes--and show that cultivated types derive from two progenitor species. Although cultivated pummelos represent selections from one progenitor species, Citrus maxima, cultivated mandarins are introgressions of C.
View Article and Find Full Text PDFBackground: Most modern citrus cultivars have an interspecific origin. As a foundational step towards deciphering the interspecific genome structures, a reference whole genome sequence was produced by the International Citrus Genome Consortium from a haploid derived from Clementine mandarin. The availability of a saturated genetic map of Clementine was identified as an essential prerequisite to assist the whole genome sequence assembly.
View Article and Find Full Text PDFPremise Of The Study: Indel markers were developed from BAC-end sequences of Citrus clementina cv. Nules. Transferability and polymorphism were tested in the Citrus genus to estimate the potential of indel markers mined from a single genotype for use in genetic studies.
View Article and Find Full Text PDFBackground: With the increasing availability of EST databases and whole genome sequences, SNPs have become the most abundant and powerful polymorphic markers. However, SNP chip data generally suffers from ascertainment biases caused by the SNP discovery and selection process in which a small number of individuals are used as discovery panels. The ongoing International Citrus Genome Consortium sequencing project of the highly heterozygous Clementine and sweet orange genomes will soon result in the release of several hundred thousand SNPs.
View Article and Find Full Text PDFSharka disease, caused by the Plum pox virus (PPV), is one of the main limiting factors for stone fruit crops worldwide. Only a few resistance sources have been found in apricot (Prunus armeniaca L.), and most studies have located a major PPV resistance locus (PPVres) on linkage group 1 (LG1).
View Article and Find Full Text PDFPremise Of The Study: Microsatellite primers were developed from bacterial artificial chromosome (BAC) end sequences of Citrus clementina and their transferability and polymorphism tested in the genus Citrus for future anchorage of physical and genetic maps and comparative interspecific genetic mapping. •
Methods And Results: Using PAGE and DNA silver staining, 79 primer pairs were selected for their transferability and polymorphism among 526 microsatellites mined in BES. A preliminary diversity study in Citrus was conducted with 18 of them, in C.
Background: Research on citrus fruit ripening has received considerable attention because of the importance of citrus fruits for the human diet. Organic acids are among the main determinants of taste and organoleptic quality of fruits and hence the control of fruit acidity loss has a strong economical relevance. In citrus, organic acids accumulate in the juice sac cells of developing fruits and are catabolized thereafter during ripening.
View Article and Find Full Text PDFTo better understand the molecular and physiological mechanisms underlying maintenance and release of seasonal bud dormancy in perennial trees, we identified differentially expressed genes during dormancy progression in reproductive buds from peach (Prunus persica [L.] Batsch) by suppression subtractive hybridization (SSH) and microarray hybridization. Four SSH libraries were constructed, which were respectively enriched in cDNA highly expressed in dormant buds (named DR), in dormancy-released buds (RD) and in the cultivars with different chilling requirement, 'Zincal 5' (ZS) and 'Springlady' (SZ), sampled after dormancy release.
View Article and Find Full Text PDFBackground: Citrus species constitute one of the major tree fruit crops of the subtropical regions with great economic importance. However, their peculiar reproductive characteristics, low genetic diversity and the long-term nature of tree breeding mostly impair citrus variety improvement. In woody plants, genomic science holds promise of improvements and in the Citrus genera the development of genomic tools may be crucial for further crop improvements.
View Article and Find Full Text PDFBackground: During the last decade, numerous microsatellite markers were developed for genotyping and to identify closely related plant genotypes. In citrus, previously developed microsatellite markers were arisen from genomic libraries and more often located in non coding DNA sequences. To optimize the use of these EST-SSRs as genetic markers in genome mapping programs and citrus systematic analysis, we have investigated their polymorphism related to the type (di or trinucleotide) or their position in the coding sequences.
View Article and Find Full Text PDFFunctional genomics technologies have been widely adopted in the biological research of both model and non-model species. An efficient functional annotation of DNA or protein sequences is a major requirement for the successful application of these approaches as functional information on gene products is often the key to the interpretation of experimental results. Therefore, there is an increasing need for bioinformatics resources which are able to cope with large amount of sequence data, produce valuable annotation results and are easily accessible to laboratories where functional genomics projects are being undertaken.
View Article and Find Full Text PDF