Publications by authors named "Javier Santiago-Arcos"

Article Synopsis
  • Enzyme immobilisation is crucial for creating stable biocatalysts that can be reused, but the behavior of enzymes on solid supports, especially under operational conditions, is not fully understood.
  • X-ray fluorescence imaging was used to study structural changes in a biocatalyst made from two unmodified metalloenzymes (laccase and dehydrogenase) when exposed to high temperatures or other operational conditions.
  • Findings reveal that while both protein and metal components rearrange during usage, they move as a unit, causing minor structural changes but leading to the biocatalyst's eventual exhaustion, highlighting the need for better understanding using advanced imaging techniques for improved bioprocesses.
View Article and Find Full Text PDF

Cell-free biocatalysis is gaining momentum in producing value-added chemicals, particularly in stepwise reaction cascades. However, the stability of enzyme cascades in industrial settings is often compromised when free enzymes are involved. In this study, we have developed a stable multifunctional heterogeneous biocatalyst coimmobilizing five enzymes on microparticles to transform 1,ω-diols into 1,ω-hydroxy acids.

View Article and Find Full Text PDF

Enzyme immobilization is a key enabling technology for a myriad of industrial applications, yet immobilization science is still too empirical to reach highly active and robust heterogeneous biocatalysts through a general approach. Conventional protein immobilization methods lack control over how enzymes are oriented on solid carriers, resulting in negative conformational changes that drive enzyme deactivation. Site-selective enzyme immobilization through peptide tags and protein domains addresses the orientation issue, but this approach limits the possible orientations to the N- and C-termini of the target enzyme.

View Article and Find Full Text PDF

Multi-enzymatic cascades with enzymes arranged in close-proximity through a protein scaffold can trigger a substrate channeling effect, allowing for efficient cofactor reuse with industrial potential. However, precise nanometric organization of enzymes challenges the design of scaffolds. In this study, we create a nanometrically organized multi-enzymatic system exploiting engineered Tetrapeptide Repeat Affinity Proteins (TRAPs) as scaffolding for biocatalysis.

View Article and Find Full Text PDF

Immobilized multienzyme systems are gaining momentum in applied biocatalysis; however, the coimmobilization of several enzymes on one carrier is still challenging. In this work, we exploited a heterofunctional support activated with three different chemical functionalities to immobilize a wide variety of different enzymes. This support is based on agarose microbeads activated with aldehyde, amino, and cobalt chelate moieties that allow a fast and irreversible immobilization of enzymes, enhancing the thermostability of most of the heterogeneous biocatalysts (up to 21-fold higher than the soluble one).

View Article and Find Full Text PDF

The activity orchestration of an unprecedented cell-free enzyme system with self-sufficient cofactor recycling enables the stepwise transformation of aliphatic diols into ω-hydroxy acids at the expense of molecular oxygen as electron acceptor. The efficiency of the biosynthetic route was maximized when two compatible alcohol dehydrogenases were selected as specialist biocatalysts for each one of the oxidative steps required for the oxidative lactonization of diols. The cell-free system reached up to 100 % conversion using 100 mM of linear C diols and performed the desymmetrization of prochiral branched diols into the corresponding ω-hydroxy acids with an exquisite enantioselectivity (ee>99 %).

View Article and Find Full Text PDF

Multidimensional kinetic analysis of immobilized enzymes is essential to understand the enzyme functionality at the interface with solid materials. However, spatiotemporal kinetic characterization of heterogeneous biocatalysts on a microscopic level and under conditions has been rarely approached. As a case study, we selected self-sufficient heterogeneous biocatalysts where His-tagged cofactor-dependent enzymes (dehydrogenases, transaminases, and oxidases) are co-immobilized with their corresponding phosphorylated cofactors [nicotinamide adenine dinucleotide phosphate (NAD(P)H), pyridoxal phosphate (PLP), and flavin adenine dinucleotide (FAD)] on porous agarose microbeads coated with cationic polymers.

View Article and Find Full Text PDF

encodes a mammalian-specific transcription factor (YY2) that shares high homology in the zinc finger region with both YY1 and REX1/ZFP42, encoded by the and gene, respectively. In contrast to the well-established roles of the latter two in gene regulation, X chromosome inactivation and binding to specific transposable elements (TEs), much less is known about YY2, and its presence during mouse preimplantation development has not been described. As it has been reported that mouse embryonic stem cells (mESC) cannot be propagated in the absence of , the mechanistic understanding of how contributes to mESC maintenance remains only very partially characterized.

View Article and Find Full Text PDF