Chlorpyrifos (CPF) biocide, exposure to which is mainly produced in the human population through diet, induces several neurotoxic effects. CPF single and repeated exposure induces memory and learning disorders, although the mechanisms that produce these outcomes are complex and not well understood. CPF treatment (single and repeated) of cholinergic septal SN56 cells induced an increase in phosphorylated-P38α levels that led to WNT/β-Catenin and NGF/P75/TrkA pathways disruption and cell death.
View Article and Find Full Text PDFAcute and long-term paraquat (PQ) exposure produces hippocampal neurodegeneration and cognition decline. Although some mechanisms involved in these effects were found, the rest are unknown. PQ treatment, for 1 and 14 days, upregulated interferon-gamma signaling, which reduced insulin levels and downregulated the insulin pathway through phosphorylated-c-Jun N-terminal-kinase upregulation, increasing glucose levels and the production of Aβ and phosphorylated-tau, by beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) overexpression and phosphorylated-GSK3β (p-GSK3β; ser9) level reduction, respectively, which induced primary hippocampal neuronal loss.
View Article and Find Full Text PDFBackground: Building control architecture that balances the assistive manipulation systems with the benefits of direct human control is a crucial challenge of human-robot collaboration. It promises to help people with disabilities more efficiently control wheelchair and wheelchair-mounted robot arms to accomplish activities of daily living.
Methods: In this study, our research objective is to design an eye-tracking assistive robot control system capable of providing targeted engagement and motivating individuals with a disability to use the developed method for self-assistance activities of daily living.
Paraquat (PQ) produces hippocampal neuronal cell death and cognitive dysfunctions after unique and continued exposure, but the mechanisms are not understood. Primary hippocampal wildtype or βAPP-Tau silenced cells were co-treated with PQ with or without E2, N-acetylcysteine (NAC), NS-398 (cyclooxygenase-2 inhibitor), MF63 (PGES-1 inhibitor) and/or recombinant brain-derived neurotrophic factor (BDNF) during one- and fourteen-days to studied PQ effect on prostaglandin E2 (PGE2) and BDNF signaling and their involvement in hyperphosphorylated Tau (pTau) and amyloid-beta (Aβ) protein formation, and oxidative stress generation, that lead to neuronal cell loss through estrogenic disruption, as a possible mechanism of cognitive dysfunctions produced by PQ. Our results indicate that PQ overexpressed cyclooxygenase-2 that leads to an increase of PGE2 and alters the expression of EP1-3 receptor subtypes.
View Article and Find Full Text PDFThe extensively utilized herbicide Paraquat (PQ) was reported to generate cognitive disorders and hippocampal neuronal cell death after unique and extended exposure. Although, most of the mechanisms that mediate these actions remain unknown. We researched whether PQ induces synaptic protein disruption, Tau and amyloid beta protein formation, oxidative stress generation, and hippocampal neuronal cell loss through anti-estrogen action in primary hippocampal neurons, after day and two weeks PQ treatment, as a probable mechanism of such learning and memory impairment.
View Article and Find Full Text PDF