The quest for new transition metal dichalcogenides (TMDs) with outstanding electronic properties operating under ambient conditions draws us to investigate the 1T-HfSe polytype under hydrostatic pressure. Diamond anvil cell (DAC) devices coupled to synchrotron X-ray, Raman, and optical (VIS-NIR) absorption experiments along with density functional theory (DFT)-based calculations prove that (i) bulk 1T-HfSe exhibits strong structural and vibrational anisotropies, being the interlayer direction especially sensitive to pressure changes, (ii) the indirect gap of 1T-HfSe tends to vanish by a -0.1 eV/GPa pressure rate, slightly faster than MoS or WS, (iii) the onset of the metallic behavior appears at ∼10 GPa, which is to date the lowest pressure among common TMDs, and finally, (iv) the electronic transition is explained by the bulk modulus - correlation, along with the pressure coefficient of the band gap, in terms of the electronic overlap between chalcogenide p-type and metal d-type orbitals.
View Article and Find Full Text PDFHigh pressure X-ray diffraction, Raman scattering, and electrical measurements, together with theoretical calculations, which include the analysis of the topological electron density and electronic localization function, evidence the presence of an isostructural phase transition around 2 GPa, a Fermi resonance around 3.5 GPa, and a pressure-induced decomposition of SnSbTe into the high-pressure phases of its parent binary compounds (α-SbTe and SnTe) above 7 GPa. The internal polyhedral compressibility, the behavior of the Raman-active modes, the electrical behavior, and the nature of its different bonds under compression have been discussed and compared with their parent binary compounds and with related ternary materials.
View Article and Find Full Text PDFMultiferroic materials exhibit two or more ferroic orders and have potential applications as multifunctional materials in the electronics industry. A coupling of ferroelectricity and ferromagnetism is hereby particularly promising. We show that the synthetic melanostibite mineral Mn FeSbO (R3‾ space group) with ilmenite-type structure exhibits cation off-centering that results in alternating modulated displacements, thus allowing antiferroelectricity to occur.
View Article and Find Full Text PDFCationic rearrangement is a compelling strategy for producing desirable physical properties by atomic-scale manipulation. However, activating ionic diffusion typically requires high temperature, and in some cases also high pressure in bulk oxide materials. Herein, we present the cationic rearrangement in bulk Mn2 FeMoO6 at unparalleled low temperatures of 150-300 (o) C.
View Article and Find Full Text PDFR2NiMnO6 (R = Tb, Ho, Er, Tm) perovskites have been prepared by soft-chemistry techniques followed by high oxygen-pressure treatments; they have been investigated by X-ray diffraction, neutron powder diffraction (NPD), and magnetic measurements. In all cases the crystal structure is defined in the monoclinic P21/n space group, with an almost complete order between Ni(2+) and Mn(4+) cations in the octahedral perovskite sublattice. The low temperature NPD data and the macroscopic magnetic measurements indicate that all the compounds are ferrimagnetic, with a net magnetic moment different from zero and a distinct alignment of Ni and Mn spins depending on the nature of the rare-earth cation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2015
The first transition-metal-only double perovskite compound, Mn(2+) 2 Fe(3+) Re(5+) O6 , with 17 unpaired d electrons displays ferrimagnetic ordering up to 520 K and a giant positive magnetoresistance of up to 220 % at 5 K and 8 T. These properties result from the ferrimagnetically coupled Fe and Re sublattice and are affected by a two-to-one magnetic-structure transition of the Mn sublattice when a magnetic field is applied. Theoretical calculations indicate that the half-metallic state can be mainly attributed to the spin polarization of the Fe and Re sites.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2014
Above-room-temperature polar magnets are of interest due to their practical applications in spintronics. Here we present a strategy to design high-temperature polar magnetic oxides in the corundum-derived A2BB'O6 family, exemplified by the non-centrosymmetric (R3) Ni3TeO6-type Mn(2+)2Fe(3+)Mo(5+)O6, which shows strong ferrimagnetic ordering with TC = 337 K and demonstrates structural polarization without any ions with (n-1)d(10)ns(0), d(0), or stereoactive lone-pair electrons. Density functional theory calculations confirm the experimental results and suggest that the energy of the magnetically ordered structure, based on the Ni3TeO6 prototype, is significantly lower than that of any related structure, and accounts for the spontaneous polarization (68 μC cm(-2)) and non-centrosymmetry confirmed directly by second harmonic generation.
View Article and Find Full Text PDFNew members of the family of complex-perovskite oxides with the formula RCu(3)(Mn(3)Fe)O(12) (R = Ce, Pr, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y) have been synthesized and characterized. Polycrystalline samples have been prepared from citrate precursors treated under moderate pressure conditions (2-3.5 GPa) and 1000 °C in the presence of KClO(4) as an oxidizing agent.
View Article and Find Full Text PDFThe synthesis, structure and magnetic properties of a 3D network based on {Co₄(cit)₄}⁸⁻ (H₄cit = citric acid) cubane units linked by octahedral Co(II) centres is reported.
View Article and Find Full Text PDFThe compounds of the title series have been prepared from citrate precursors under moderate pressure conditions (P = 2 GPa) and 1000 degrees C in the presence of KClO(4) as oxidizing agent. The crystal structures are cubic, space group Im3 (No. 204); the unit cell parameters linearly vary from a = 7.
View Article and Find Full Text PDFPressure-induced switching of a fast-relaxing single-molecule magnet to a slow-relaxing isomer is observed for the first time by using a combination of high pressure single-crystal X-ray diffraction and high pressure magnetic measurements.
View Article and Find Full Text PDFA combination of high pressure single crystal X-ray diffraction and high pressure SQUID magnetometry has been used to study three hydroxo-bridged copper(II) dimers. [Cu2(OH)2(H2O)2(tmen)2](ClO4)2 (1; tmen = tetramethylethylenediamine), [Cu2(OH)2(tben)2](ClO4)2 (2; tben = di-tbutylethylenediamine) and [Cu2(OH)2(bpy)2](BF4)2 (3; bpy = 2,2'-bipyridine) have been structurally determined to 2.5, 0.
View Article and Find Full Text PDFA combined study of the high pressure crystallography and high pressure magnetism of the complex [Mn3(Hcht)2(bpy)4](ClO4)3.Et2O.2MeCN (1.
View Article and Find Full Text PDFThe first combined high pressure single-crystal X-ray diffraction and high pressure magnetism study of two polymetallic clusters is presented in an attempt to correlate the observed changes in structure with changes in magnetic response without the need for changes in external ligation. At 1.5 GPa the structure of [Mn(6)O(2)(Et-sao)(6)(O(2)CPh(Me)(2))(2)(EtOH)(6)] (1; Et-saoH(2) = 2-hydroxyphenylpropanone)--a single molecule magnet (SMM) with an effective anisotropy barrier of approximately 86 K--and of [Mn(6)O(2)(Et-sao)(6)(O(2)C-naphth)(2)(EtOH)(4)(H(2)O)(2)] 2 both undergo significant structural distortions of their metallic skeletons, which has a direct effect upon the observed magnetic response.
View Article and Find Full Text PDF[Ni4Cl4(HL)4] () {H2L=HN(CH2CH2OH)2} has S4 symmetry and crystallises in the tetragonal space group I4(1)/a. Two exchange couplings are observed between the four Ni(II) centres, with J1=7.29 cm(-1) and J2=-2.
View Article and Find Full Text PDFAn investigation of the magnetic properties of the cobalt(II) citrate cubane [C(NH 2) 3] 8{Co 4(cit) 4}.4H 2O reveals that the cluster is a new cobalt(II) single-molecule magnet, with an energy barrier to reorientation of the magnetization, Delta E/ k B = 21 K, and tau 0 = 8 x 10 (-7) s. The compound displays distinct, frequency-dependent peaks in the out-of-phase (chi'') component of the ac magnetic susceptibility and magnetization versus field hysteresis loops that are temperature and sweep rate dependent.
View Article and Find Full Text PDFThe possibilities of the use of Eu3+ in extracting information of the pressure effects on the nature of its crystal site in the NH4.Eu(SO4)2 catalytic host are closely inspected through the study of emission spectra for applied pressures up to 87 kbar. The phenomenological crystal field analysis of these spectra reveals clear discontinuities, at approximately 30 kbar, the sharper ones, and then at approximately 70 kbar, in crystal field strength trends, which taken together with structure-based simulations of crystal field interactions indicate well-defined pressure-induced anisotropic distortions in Eu3+ local environments.
View Article and Find Full Text PDFThe synthesis, structure and magnetic properties of [Co(II)(4)Co(III)(3)(HL)(6)(NO(3))(3)(H(2)O)(3)](2+) [H(3)L = H(2)NC(CH(2)OH)(3)] are reported: the complex is an exchange-biased single molecule magnet.
View Article and Find Full Text PDF