Wheat blast, caused by the fungus Magnaporthe oryzae, threatens global cereal production since its emergence in Brazil in 1985 and recently spread to Bangladesh and Zambia. Here we demonstrate that the AVR-Rmg8 effector, common in wheat-infecting isolates, is recognized by the gene Pm4, previously shown to confer resistance to specific races of Blumeria graminis f. sp.
View Article and Find Full Text PDFA bread wheat panel reveals rich genetic diversity in Turkish, Pakistani and Iranian landraces and novel resistance loci to diverse powdery mildew isolates via subsetting approaches in association studies. Wheat breeding for disease resistance relies on the availability and use of diverse genetic resources. More than 800,000 wheat accessions are globally conserved in gene banks, but they are mostly uncharacterized for the presence of resistance genes and their potential for agriculture.
View Article and Find Full Text PDFListeria monocytogenes is a foodborne pathogen which, in 2021, was considered the fifth most commonly reported zoonosis in humans in the European Union (EU). Ready-to-eat (RTE) fishery products, deli meats or soft cheeses have been mostly involved in food safety alerts and outbreaks in the last years. Hurdle technology by food industries has been widely used to enhance the safety of foods.
View Article and Find Full Text PDFAquaculture is becoming a strategic sector for many national economies to supply the increasing demand for fish from consumers. Fish culture conditions and processing operations can lead to an increase in microbial contamination of farmed fish that may shorten the shelf-life of fish products and byproducts, and ready-to-eat fishery products. The objective of this study was to evaluate the hygienic-sanitary status of water, environment, and processing of fresh-farmed rainbow trout () fillets produced in a local fish farm in Andalusia, Spain.
View Article and Find Full Text PDFStaying ahead of the arms race against rust and mildew diseases in cereal crops is essential to maintain and preserve food security. The methodological challenges associated with conventional resistance breeding are major bottlenecks for deploying resistance (R) genes in high-yielding crop varieties. Advancements in our knowledge of plant genomes, structural mechanisms, innovations in bioinformatics, and improved plant transformation techniques have alleviated this bottleneck by permitting rapid gene isolation, functional studies, directed engineering of synthetic resistance and precise genome manipulation in elite crop cultivars.
View Article and Find Full Text PDFThe fungus Blumeria graminis f. sp. tritici causes wheat powdery mildew disease.
View Article and Find Full Text PDFRecent progress in large-scale sequencing, genomics, and rapid gene isolation techniques has accelerated the identification of race-specific resistance (R) genes and their corresponding avirulence (Avr) genes in wheat, barley, rye, and their wild relatives. Here, we describe the growing repertoire of identified R and Avr genes with special emphasis on novel R gene architectures, revealing that there is a large diversity of proteins encoded by race-specific resistance genes that extends beyond the canonical nucleotide-binding domain leucine-rich repeat proteins. Immune receptors with unique domain architectures controlling race-specific resistance possibly reveal novel aspects on the biology of host-pathogen interactions.
View Article and Find Full Text PDFCrop breeding for resistance to pathogens largely relies on genes encoding receptors that confer race-specific immunity. Here, we report the identification of the wheat Pm4 race-specific resistance gene to powdery mildew. Pm4 encodes a putative chimeric protein of a serine/threonine kinase and multiple C2 domains and transmembrane regions, a unique domain architecture among known resistance proteins.
View Article and Find Full Text PDFPlant nucleotide-binding leucine-rich repeat receptors (NLRs) act as intracellular sensors for pathogen-derived effector proteins and trigger an immune response, frequently resulting in the hypersensitive cell death response (HR) of the infected host cell. The wheat (Triticum aestivum) NLR Pm2 confers resistance against the fungal pathogen Blumeria graminis f. sp.
View Article and Find Full Text PDFPlasma membrane-associated and intracellular proteins and protein complexes play a pivotal role in pathogen recognition and disease resistance signaling in plants and animals. The two predominant protein families perceiving plant pathogens are receptor-like kinases and nucleotide binding-leucine-rich repeat receptors (NLR), which often confer race-specific resistance. Leaf rust is one of the most prevalent and most devastating wheat diseases.
View Article and Find Full Text PDFTheor Appl Genet
March 2019
The development of durable host resistance strategies to control crop diseases is a primary need for sustainable agricultural production in the future. This article highlights the potential of recent progress in the understanding of host resistance for future cereal breeding. Much of the novel work is based on advancements in large-scale sequencing and genomics, rapid gene isolation techniques and high-throughput molecular marker technologies.
View Article and Find Full Text PDFPm3 from wheat encodes a nucleotide-binding leucine-rich repeat type of receptor and confers resistance to powdery mildew caused by the fungal pathogen Blumeria graminis f.sp. tritici (Bgt).
View Article and Find Full Text PDFAlthough oat cultivation around the Mediterranean basin is steadily increasing, its yield in these regions lags far behind those of Northern Europe. This results mainly from the poor adaptation of current oat cultivars to Mediterranean environments. Local landraces may act as reservoirs of favorable traits that could contribute to increase oat resilience in this region.
View Article and Find Full Text PDFWe have isolated a novel powdery mildew resistance gene in wheat that was originally introgressed from rye. Further analysis revealed evolutionary divergent history of wheat and rye orthologous resistance genes. Wheat production is under constant threat from a number of fungal pathogens, among them is wheat powdery mildew (Blumeria graminis f.
View Article and Find Full Text PDFAlthough often investigated within the context of plant growth and development and/or seed composition, plant lipids have roles in responses to environment. To dissect changes in lipid and fatty acid composition linked to drought tolerance responses in oats, we performed a detailed profiling of (>90) different lipids classes during a time course of water stress. We used two oat cultivars, Flega and Patones previously characterized as susceptible and tolerant to drought, respectively.
View Article and Find Full Text PDFThere is a large diversity of genetically defined resistance genes in bread wheat against the powdery mildew pathogen Blumeria graminis (B. g.) f.
View Article and Find Full Text PDFStomatal dysfunction known as "locking" has been linked to the elicitation of a hypersensitive response (HR) following attack of fungal pathogens in cereals. We here assess how spatial and temporal patterns of different resistance mechanisms, such as HR and penetration resistance influence stomatal and photosynthetic parameters in oat () and the possible involvement of hydrogen peroxide (HO) in the dysfunctions observed. Four oat cultivars with differential resistance responses (i.
View Article and Find Full Text PDFIdentification of causal mutations in barley and wheat is hampered by their large genomes and suppressed recombination. To overcome these obstacles, we have developed MutChromSeq, a complexity reduction approach based on flow sorting and sequencing of mutant chromosomes, to identify induced mutations by comparison to parental chromosomes. We apply MutChromSeq to six mutants each of the barley Eceriferum-q gene and the wheat Pm2 genes.
View Article and Find Full Text PDFDiseases caused by crown rust (Puccinia coronata f. sp. avenae) and powdery mildew (Blumeria graminis f.
View Article and Find Full Text PDFIn this study, we find and characterize the sources of tolerance to drought amongst an oat (Avena sativa L.) germplasm collection of 174 landraces and cultivars. We used multivariate analysis, non-supervised principal component analyses (PCA) and supervised discriminant function analyses (DFA) to suggest the key mechanism/s responsible for coping with drought stress.
View Article and Find Full Text PDF